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Big Data in Climate

• Satellite Data
– Spectral Reflectance

– Elevation Models

– Nighttime Lights

– Aerosols

• Oceanographic Data
– Temperature

– Salinity

– Circulation

• Climate Models

• Reanalysis Data

• River Discharge

• Agricultural Statistics

• Population Data

• Air Quality

• …

Source: NCAR

Source: NASA
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“Climate change research is now 
‘big science,’ comparable in its 
magnitude, complexity, and societal 
importance to human genomics and 
bioinformatics.”
(Nature Climate Change, Oct 2012)
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Pattern Mining: 
Monitoring Ocean Eddies
• Spatio-temporal pattern mining using novel 

multiple object tracking algorithms
• Created an open source data base of 20+ years of 

eddies and eddy tracks

Extremes and Uncertainty: 
Heat waves, heavy rainfall
• Extreme value theory in space-time and 

dependence of extremes on covariates
• Spatiotemporal trends in extremes and 

physics-guided uncertainty 
quantification

Relationship mining: 
Seasonal hurricane activity
• Statistical method for automatic inference of 

modulating networks
• Discovery of key factors and mechanisms 

modulating hurricane variability

Sparse Predictive Modeling: 
Precipitation Downscaling
• Hierarchical sparse regression and multi-task 

learning with spatial smoothing
• Regional climate predictions from global 

observations

Network Analysis: 
Climate Teleconnections
• Scalable method for discovering related graph 

regions
• Discovery of novel climate teleconnections
• Also applicable in  analyzing brain fMRI data

Change Detection: 
Monitoring Ecosystem Distrubances
• Robust scoring techniques for identifying  diverse 

changes in spatio-temporal data 
• Created a comprehensive catalogue of global changes in 

surface water and vegetation, e.g. fires and 
deforestation.

Five Year, $ 10m NSF Expeditions in Computing Project (1029711, PI: Vipin Kumar, U. Minnesota)

Understanding Climate Change: A Data-driven Approach
Research Highlights

http://climatechange.cs.umn.edu/

[Arindam Banerjee]

[Auroop Ganguly]
[Nagiza Samatova]
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Understanding Climate Change: A Data-driven Approach
Research Highlights

http://climatechange.cs.umn.edu/

Challenges

• Multi-resolution, multi-scale data

• High temporal variability

• Spatio-temporal auto-correlation

• Spatial and temporal heterogeneity

• Large amount of noise and missing values

• Lack of representative ground truth

• Class imbalance (changes are rare events)
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Big Data in Earth System Monitoring

A vegetation index measures the 
surface “greenness” – proxy for total 

biomass

This vegetation time series
captures temporal dynamics 
around the site of the China 
National Convention Center

Data Type Coverage Spatial
Resolution

Temporal 
Resolution

Spectral 
Resolution

Duration Availability

MODIS Multispectral Global 250 m Daily 7 2000 - present Public

LANDSAT Multispectral Global 30 m 16 days 7 1972 - present Public

Hyperion Hyperspectral Regional 30 m 16 days 220 2001 - present Private

Sentinal - 1 Radar Global 5 m 12 days - 2014 - present Public

Quickbird Multispectral Global 2.16 m 2 to 12 days 4 2001 - 2014 Private

WorldView - 1 Panchromatic Global 50 cm 6 days 1 2007 - present Private

MODIS covers ~ 5 billion locations globally 
at 250m resolution daily since Feb 2000.

Longitude

Latitude

Time

grid cell
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3. Global mapping of inland surface water dynamics

 Heterogeneous Ensemble Learning and Physics-guided Labeling

Monitoring Global Change: Case Studies

Lake Oroville near the Bidwell Marina in 2011 and 2014

1. Global mapping of forest fires:

 RAPT: Rare Class Prediction in Absence of 
Ground Truth

2. Mapping of plantation dynamics in 
tropical forests:

 Handling Heterogeneity in Space, Time and 
Target Class

xSIG 2017, Tokyo4/24/2017 7



Case Study 1: Global Forest Fires Mapping

Monitoring fires is important for climate change impact

State-of-the-art: NASA MCD64A1
• Most extensively used global fire monitoring product
• Uses MODIS surface reflectance and Active Fire data in a predictive model
• Performance varies considerably across different geographical regions
• Known to have very low recall in tropical forests that play a critical role in

regulating the Earth’s climate, maintaining biodiversity, and serving as carbon sinks 

A record number of more than 150 countries 
signed the landmark agreement to tackle 
climate change at a ceremony at UN 
headquarters on 22 April, 2016.

“the best chance to save 
the one planet we have"
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Predictive Modeling:
Traditional Paradigm

Explanatory
Variable 

Target Label

1

0

0

1

. .

1

Learn a classification function

which generalizes well on 
unseen data that comes from 
the same distribution as 
training data.

Predicts whether a given 
pixel is burned or not?

Burned area mapping
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Predictive Modeling for 
Global Monitoring of Forest Fires

Challenges:

(1) Complete absence of target labels for supervision
(however, imperfect annotations of poor quality labels are available for every sample)

Variations in the relationship between the explanatory and target variable
• Geographical heterogeneity

• Seasonal heterogeneity

• Land class heterogeneity 

• Temporal heterogeneity

Global availability of labeled samples 
for burned area classification

?

?

?
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Challenges:

(1) Complete absence of target labels for supervision     
(however, imperfect annotations of poor quality labels are available for every sample)

(2) Highly imbalanced classes

True Positive Rate = 0.9       
False Positive Rate = 0.01

skew
0

1 recall

precision

For eg.   California State

Year 2008 (experienced maximum 
fire activity in last decade)

2,296 sq. km. of forests burned
out of a total

73,702 sq. km. forested area

Predictive Modeling for 
Global Monitoring of Forest Fires
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Challenges:

(1) Complete absence of target labels for supervision 
(however, imperfect annotations of poor quality labels are available for every sample)

(2) Highly imbalanced classes

(3) How to evaluate performance of a model 
using imperfect labels?

Global availability of labeled samples 
for burned area classification

Predictive Modeling for 
Global Monitoring of Forest Fires

xSIG 2017, Tokyo4/24/2017 12



Predictive Modeling for a Rare Target Class 
using Imperfect Labels

Examples of imperfect labels

What are imperfect labels ?
• Noisy/perturbed true labels
• Inexpensive to obtain

• Raw feature
• Heuristics (given by expert) 

• Available for all test instances

Application Target label Imperfect label

Burned Area Fire/No Fire Thermal anomaly

Urban settlement Urban/No urban Night time light

Recommending
items to a new user

Interested/
No interested

Friends interest

xSIG 2017, Tokyo4/24/2017 13
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Learning with imperfect labels

Supervised Learning

Imperfect LabelsExpert-annotated Labels

Sufficient 
training samples

Inadequate
training samples

SVM
Decision tree
Logistic regression

Semi-supervised
Active Learning
Multi-view
Multi-task

Single annotatorMultiple  annotators
Learning with crowds
Raykar et al.

Partial Supervision Imperfect Supervision
Positive Unlabeled learning
Bing Liu et al.
Elkan et al.

Natrajan et al.
Menon et al.

Balanced Rare class
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions
True Labels  
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions
Imperfect Labels that are conditionally 

independent (Errors shown in Red)
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 

of feature space given the true label (CCN)

+ <  1(1) 

Assumptions

Imperfect Labels that are conditionally 
independent (Errors shown in Red)

Imperfect Labels that are not conditionally 
independent (Errors shown in Red)
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions

Blum et.al, COLT 1998
Given enough samples, it is possible to learn a 
classifier in CCN label noise scenario that is as good 
as one learned using perfectly labeled samples.
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions

Blum et.al, COLT 1998
Given enough samples, it is possible to learn a 
classifier in CCN label noise scenario that is as good 
as one learned using perfectly labeled samples.

Natarajan et.al, NIPS 2013
For some performance measures like accuracy, a 
classifier can be learned using CCN labels treating 
them as perfect labels.
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions

Blum et.al, COLT 1998
Given enough samples, it is possible to learn a 
classifier in CCN label noise scenario that is as good 
as one learned using perfectly labeled samples.

Natarajan et.al, NIPS 2013
For some performance measures like accuracy, a 
classifier can be learned using CCN labels treating 
them as perfect labels.

Menon et.al, ICML 2015
-For general CCN scenario showed the linear relationship 
between P(y=1|x) and P(a=1|x).
- Presented a method to optimize balanced error rate, 
AUC
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions

Blum et.al, COLT 1998
Given enough samples, it is possible to learn a 
classifier in CCN label noise scenario that is as good 
as one learned using perfectly labeled samples.

Natarajan et.al, NIPS 2013
For some performance measures like accuracy, a 
classifier can be learned using CCN labels treating 
them as perfect labels.

Menon et.al, ICML 2015
-For general CCN scenario showed the linear relationship 
between P(y=1|x) and P(a=1|x).
- Presented a method to optimize balanced error rate, 
AUC

Imperfect supervision under rare class scenario
Models built using imperfect labels a to optimize combinations of 
precision and recall can perform very poorly compared to models 
built using true labels y
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Learning with imperfect labels

(2) Imperfect label is conditionally independent 
of feature space given the true label (CCN)

+ <  1(1) 

Assumptions

Blum et.al, COLT 1998
Given enough samples, it is possible to learn a 
classifier in CCN label noise scenario that is as good 
as one learned using perfectly labeled samples.

Natarajan et.al, NIPS 2013
For some performance measures like accuracy, a 
classifier can be learned using CCN labels treating 
them as perfect labels.

Menon et.al, ICML 2015
True class probability P(y=1|x) and corrupted class 
probability P(a=1|x) are monotonically related under 
CCN assumption and showed that balanced error rate, 
AUC can be optimized using corrupted labels.

Liu et.al, ICML 2003 
For Positive and Unlabeled (PU) learning setting 
(CCN with β =0) presented an algorithm to optimize 
precision*recall without using any perfect labels.

Elkan et.al, KDD 2008
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RAPT: RAre class Prediction in absence of ground Truth

• Step 1: Learn classification models using imperfect labels
– We provide a new method to optimize precision*recall using imperfect 

labels and prove that the selected threshold maximizes the true 
precision*recall

• Step 2: Combine predictions from classification model 
and the imperfect label
– For ultra-rare class scenarios, the gain in precision after aggregation is 

significantly higher compared to the loss in recall
– The improvement in G-measure after step 2 is by a factor of 

• Step 3: Collective classification to use spatial context
– Exploits the relationship structure such as spatial neighborhood, biological 

network or social network, to improve the coverage (recall) of the rare class 
instances.
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RAPT: RAre class Prediction in absence of ground Truth

• Step 1: Learn classification models using imperfect labels that is as 
good as the one that could be built using perfect labels

– We provide a new method to optimize precision*recall using imperfect labels and 
prove that the selected threshold maximizes the true precision*recall

• Step 2: Combine predictions from classification model and the 
imperfect label to improve precision at some loss in recall

– For ultra-rare class scenarios, the gain in precision after aggregation is significantly 
higher compared to the loss in recall

– The improvement in G-measure after step 2 is by a factor of 

• Step 3: Use spatial context to improve recall
– Exploits the relationship structure such as spatial neighborhood, biological network 

or social network, to improve the coverage (recall) of the rare class instances.
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Results for Burned Area Mapping 

California State

RAPT Step 1

GT-based classifier
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Results for Burned Area Mapping 

California State

RAPT Step 1

Weak label

GT-based classifier
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Results for Burned Area Mapping 

California State

RAPT Step 1

Weak label

GT-based classifier
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Results for Burned Area Mapping 

California State

RAPT Step 2

RAPT Step 1

Weak label

GT-based classifier
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Results for Burned Area Mapping 

California State

RAPT Step 2

RAPT Step 3

RAPT Step 1

Weak label

GT-based classifier
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Results for Burned Area Mapping 

Georgia State

RAPT Step 2

RAPT Step 3

RAPT Step 1

Weak label

GT-based classifier
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Results for Burned Area Mapping 

Montana State

RAPT Step 2

RAPT Step 3

RAPT Step 1

Weak label

GT-based classifier
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571 K sq. km. burned area found in tropical forests 

three times the area reported by state-of-art NASA product: MCD64A1

Fires in tropical forests during 2001-2014

RAPT
(571 K)

MCD64A1
(186 K)

126 K
60K

445 K

xSIG 2017, Tokyo

Global Monitoring of Fires in Tropical Forests
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Before Fire Event After Fire Event

Sudden drop followed by recovery is a 
key signature of forest fires

Burn scar in Landsat composite

Change in Vegetation series

RAPT
MCD64A1

Landsat false-color composite shows the scar 
after the fire event identified by RAPT

Multiple lines of evidence 
indicate that RAPT-only 
points are actual forest fires

xSIG 2017, Tokyo

Validation
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Before Fire Event After Fire Event

Burn scar in Landsat composite

Change in Vegetation series

RAPT
MCD64A1

Landsat false-color composite shows the scar 
after the fire event identified by RAPT

Multiple lines of evidence 
indicate that RAPT-only 
points are actual forest fires

Validation

Synchronized drop followed by recovery 
is a key signature of forest fires
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Burn Detection                                                B         B        B
Land cover           F          F        F          F         F         F        F       N          N        N        N       N        N
Year  2002    2003   2004   2005   2006   2007   2008   2009   2010   2011   2012   2013   2014

Google Earth Image: 
Year 2002

Google Earth Image: 
Year 2015

RAPT detection 2002-2014
(RAPT only Common)

xSIG 2017, Tokyo

Deforestation via Burning in Amazon
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Case Study 2: Mapping of Plantation Dynamics

Interplay between food, energy and 
water:

Production of edible oils and biofuels. 
High carbon emissions.

Degradation of water quality. 
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State-of-the-art and Challenges
•Tree Plantation (TP): This data set is

created by Transparent World, with the
support of Global Forest Watch. Plantations
are manually annotated on 2014. TP has high
recall and low precision.

•Roundtable on Sustainable Palm
Oil (RSPO): This dataset is available across

Indonesia in 2000, 2005, and 2009. In addition,
the study digitized all the locations into 19
land cover types in these eras. RSPO has high
precision and low recall.

TP, 2014 RSPO, 2001

RSPO, 2005 RSPO, 2009

 Challenges
•Imperfect annotators

•Tree Plantation (TP): high recall and low precision.
•Roundtable on Sustainable Palm Oil (RSPO): high precision and low recall.

•Data heterogeneity

•Land cover heterogeneity
 differentiate plantation from a variety of land covers, e.g. forest, are highly confused with plantations.

•Spatial heterogeneity
•Temporal heterogeneity
 Seasonal variation - e.g., a crop land after harvest looks very similar to a barren land.
 Yearly variation – the spectral features of a land cover change across years.

•Noisy and high-dimensional feature space
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Our Contribution

 Learning from multiple imperfect annotators 
(Jia et al. BigData 2016)

 Each annotator has different expertise level on different plantation types.
 We recursively update the expertise of each annotator and estimate true labels.

 Handling temporal heterogeneity in prediction 
(Jia et al. SDM 2017)

 We model temporal and spatial dependencies across years in an LSTM model.
 We propose an incremental learning strategy to update the LSTM model.

 Aggregating classes, collecting samples and validating results
(Jia et al. Technical Report, 2017)

 We aggregate similar classes according to domain expertise.
 For each aggregated class, we sample equal amount of samples from each sub-

class across multiple years.
 We validate the generated plantation maps by comparing random sampled

locations to high-resolution images.

• 1. Jia, X., Khandelwal, A., Gerber, J., Carlson, K., West, P., and Kumar, V. Learning Large-scale Plantation Mapping from Imperfect
Annotators. In IEEE Big Data (Big Data), 2016.

• 2. Jia, X., Khandelwal, A., Nayak, G., Gerber, J., Carlson, K., West, P., and Kumar, V. Predict Land Covers with Transition Modeling and
Incremental Learning. In SDM, 2017.

• 3. Jia, X., Khandelwal, A., Gerber, J., Carlson, K., Samberg, L., West, P., and Kumar, V. Automated Plantation Mapping in Southeast Asia Using
Remote Sensing Data. In Department of Computer Science and Engineering-Technical Reports.
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Annual Plantation Maps

h29v08

h29v09

h28v09

 Annual growth rate ≈ 9.57%
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All plantations

This and all following figures 
show only confident forest pixels.

Interaction between Fires and Palm Oil Plantation
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Plantations with 
no burn scars

Plantations with burn 
scar during 2001-2014

This and all following figures 
show only confident forest pixels.

Interaction between Fires and Palm Oil Plantation
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Plantations with 
no burn scars

Plantations with burn 
scar during 2001-2014

Burned pixels around 
plantations (same burn 
date as nearby red pixels) 

This and all following figures 
show only confident forest pixels.

Interaction between Fires and Palm Oil Plantation



Case Study 3:  Global Mapping of Surface Water 
Dynamics

Cedo Caka Lake
in Tibet, 1984

Cedo Caka Lake
in Tibet, 2011

Shrinking of Aral Sea since 1960s

Aral Sea in 2014Aral Sea in 2000

Melting of glacial lakes in Tibet xSIG 2017, Tokyo4/24/2017 43



Importance of Monitoring Global Surface Water Dynamics

Cedo Caka Lake
in Tibet, 1984

Cedo Caka Lake
in Tibet, 2011

Shrinking of Aral Sea since 1960s

Aral Sea in 2014Aral Sea in 2000

Melting of glacial lakes in Tibet

Opportunity in using Remote Sensing Data

• Multi-spectral data

 MODIS (at 500m, from 2000)
 Landsat (at 30m, from 1970s)

• Can be used to classify every location at a given 
time as water or land (binary classes)

• Ground truth on specific dates available from 
various sources: SRTM, GLWD

xSIG 2017, Tokyo4/24/2017 44



Challenges for Traditional Big Data Methods in Monitoring Water

• Challenge 1: Heterogeneity in 
space and time

– Water and land bodies look different 
in different regions of the world

– Same water body can look different 
at different time-instances

Great Bitter Lake, Egypt Lake Tana, Ethiopia Lake Abbe, Africa

Mar Chiquita Lake, Argentina in 2000 (left) and 2012 (right)

• Challenge 2: Data Quality

– Noise: clouds, shadows, 
atmospheric disturbances

– Missing data

Poyang Lake, China 

(Pink color shows missing data)
xSIG 2017, Tokyo4/24/2017 45



Method Innovations for Monitoring Water

• Ensemble Learning Methods for 
Handling Heterogeneity in Data 1,2

P1

P2

P3

Positive Modes
(Water)

Negative Modes
(Land)

N1

N2

N3

• Using Physics Guided Labeling 
to Handle Poor Data Quality3,4

Elevation        A > B > C > D

Learn an ensemble of classifiers to distinguish b/w 
different pairs of positive and negative modes

Use elevation information to constrain 
physically-consistent labels

3 Khandelwal et al. ICDM 2015
4 Mithal et al. (PhD Dissertation)

1 Karpatne et al. SDM 2015
2 Karpatne et al. ICDM 2015 xSIG 2017, Tokyo4/24/2017 46



A Global Surface Water Monitoring System 
http://z.umn.edu/monitoringwater

• Maps the dynamics of all 
major surface water bodies 
(surface area > 2.5 km2) 
shown as blue dots

Key Highlights:

• Detects melting of glacial lakes
• Maps changes in river morphology
• Identifies reservoir constructions
• Finds relationships b/w surface water 

and precipitation/groundwater

xSIG 2017, Tokyo4/24/2017 47
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Showing Surface Water Dynamics

Don Martin Dam, Mexico

Surface area of water around Don Martin Dam across time

Annual Landsat Time-lapse of this region 
(Courtesy: Google Earth Engine)

xSIG 2017, Tokyo4/24/2017 48



Regions of Change 
in South America

Red Dots (Water Gain):
Region of size  > 2.5 km2 that have changed 

from land to water in the last 15 years

Green Dots (Water Loss):
Region of size  > 2.5 km2 that have changed 

from water to land in the last 15 years

Example time series of a Water Gain region

Example time series of a Water Loss region
xSIG 2017, Tokyo4/24/2017 49



Examples of Change: Shrinking Water Bodies

Aggregate dynamics of all green dots shown on left

(Green dots show regions changing from water to land in last 15 years)

Annual Time-lapse of an example green dot

xSIG 2017, Tokyo4/24/2017 50



Examples of Change: Colorado River
Shrinking of Lake Mead Shrinking of Lake Powell

Annual time-lapse of selected region

Aggregate dynamics of all 
green dots in Lake Mead

Aggregate dynamics of all 
green dots in Lake Powell

Annual time-lapse of selected region

xSIG 2017, Tokyo4/24/2017 51



September 2013

November 2015

November 2015

Examples of Change: Melting Glacial Lakes in Tibet
Water Gain regions (red dots) 
show melting of lakes

Red polygons show regions 
changing from land to water 

Aggregate dynamics of 
all red regions in Tibet

xSIG 2017, Tokyo4/24/2017 52



Examples of Change: River Meandering
(Adjacent occurrence of Water Gain (red) and Water Loss (green) regions all along 
the river indicate the displacement of water from the green dots to the red dots)

Zoomed-in View

Example time series of a Water Gain region 

Example time series of a Water Loss region 

1

Time-lapse of 1

2

Time-lapse of 2

xSIG 2017, Tokyo4/24/2017 53



Examples of Change: Delta Erosion
(Water Gain and Water Loss regions appear on the coastline, due to displacement of sediments around river deltas)

Zoomed-in View

Example time series of a Water Gain region Example time series of a Water Loss region 

Annual time-lapse of region shown on right

xSIG 2017, Tokyo4/24/2017 54



Examples of Changes in Japan

(Orange polygons show 
regions changing from 
land to water)4/24/2017 55

1. Construction of Chubetsu Dam, Hokkaido 

2. Construction of 
Chubu Centrair
International Airport   

xSIG 2017, Tokyo



Global Reservoir and Dam (GRanD) Database

Global Reservoir and Dam (GRanD) 
Database:

• A data curation initiative by Global 
Water System Project (GWSP)

• Finds 61 dams constructed after 2001

UMN Approach:

• Finds 701 dams constructed after 2001

Dams reported by GRanD since 2001: 35

xSIG 2017, Tokyo4/24/2017 56

A data curation initiative by Global Water System Project (GWSP)



Comparison of Dam Detections with GRanD
Global Reservoir and Dam (GRanD) 

Database:

• A data curation initiative by Global 
Water System Project (GWSP)

• Finds 61 dams constructed after 2001

UMN Approach:

• Finds 701 dams constructed after 2001

Dams only reported by GRanD: 5
Dams reported by both UMN and GRanD: 30
Dams only reported by UMN: 671

xSIG 2017, Tokyo4/24/2017 57



Potential Use Cases of a Water Monitoring System

Quantifying water stocks and risks 

Global projections of water risks (red)

Global mapping of river discharge

Assessing the impact of climate change 
and human actions 

Integrating with hydrological models

Gleason et al. PNAS 2014 

Melting Glacial Lakes Constructions of Dams

xSIG 2017, Tokyo4/24/2017 58



Concluding Remarks

• Big data techniques hold great promise for increasing our 
understanding of the Earth’s climate and environment.

• Domain theory can be used to guide the process of 
knowledge discovery in scientific data

– “Theory-guided Data Science”

• Methods have applicability across diverse domains:

– Ecosystem management

– Epidemiology

– Geospatial Intelligence 

– Neuroscience

xSIG 2017, Tokyo4/24/2017 59



Thank You! Questions?

UMN Graduate Students

UMN Team Members
Arindam Banerjee, Snigdhansu Chatterjee, Stefan Liess, Shashi 
Shekhar, Michael Steinbach

NSF Expeditions Collaborators
NCSU: Nagiza Samatova, Fredrick Semazzi;  Northeastern: Auroop Ganguly; 
North Carolina A&T: Abdollah Homaifar, Fred Semazzi

External Collaborators
NASA Ames: Rama Nemani, Nikunj Oza; IonE, UMN: Kate Braumann; 
UCLA: Dennis Lettenmaier, Miriam Marlier

Guruprasad NayakAnkush Khandelwal Varun Mithal

Work supported by NASA and NSF Expeditions in Computing project on Understanding Climate Change using Data-driven Approaches

Anuj Karpatne Xi Chen

Xiaowei Jia Saurabh Agrawal
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