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Single Program Multiple Data

int main () {
...

}
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Task Parallelism
int main () {
...

}

Sriram Krishnamoorthy3



Task Parallelism
int main () {
...

}
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Task-parallel Abstractions

Finer specification of concurrency, data locality, and 
dependences

Convey more application information to compiler and 
runtime

Adaptive runtime system to manage tasks

Application writer specifies the computation
Writes optimizable code

Tools to transform code to generate an efficient 
implementation
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The Promise

Application writer specifies the 
computation

Computation mapped to specific 
execution environment by the software 
stack

We are transferring some of the burden 
away from the programmer
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The Challenge

We are transferring some of the 
burden to the software stack

Handling million MPI processes is 
supposed to be hard; how about 
billions of tasks?

What about the software ecosystem?
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Tracing and Constraining Work Stealing 
Schedulers
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Research Directions

Concurrency management and tracing

Dynamic load balancing

Data locality optimization

Task granularity selection

Data race detection
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Recursive Task Parallelism

fn() {
s1;
async { /*A1*/
s2;
finish async s3;//A2
s4;

}
async s5; //A3
s6;

}

S

PA1s1

s2

PA2

s3

s4

S
PA3

s5 s6
S
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Work Stealing

A worker begins with one/few 
tasks

Tasks spawn more tasks
When a worker is out of tasks, it 
steals from another worker

A popular scheduling strategy for 
recursive parallel programs

Well-studied load balancing 
strategy
Provably efficient scheduling
Understandable space and time 
bounds

Sriram Krishnamoorthy11



Objective

Trace execution under work stealing

Exploit information from trace to perform various 
optimizations

Constrain the scheduler to obtain desired behavior
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Tracing

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI’13 http://dl.acm.org/citation.cfm?id=2462193
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Tracing Work Stealing

When and where each task executed

Captures the order of events for online and offline 
analysis

Challenges
Sheer size of the trace
Application perturbation might make it impractical
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Tracing Approach: Illustration

Steals in order of levels
Almost one steal per level

…

task async step steal

a

b

…

…c

a
bc

Deque
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Space Overhead: Shared Memory

Small trace sizes, less affected by core count or problem 
size
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Figure 4.10: Space comparison between naïvely tracing tasks using explicit
enumeration (Enum) and using the proposed tracing framework (the steal
tree). Using the steal tree to trace each application requires orders of mag-
nitude less storage than naïve tracing.
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Figure 4.10: Space comparison between naïvely tracing tasks using explicit
enumeration (Enum) and using the proposed tracing framework (the steal
tree). Using the steal tree to trace each application requires orders of mag-
nitude less storage than naïve tracing.
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Space Overhead: Distributed Memory

Still less than 160MB in total on 32000 cores
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Figure 4.5: The storage overhead in KB/thread with our tracing scheme
using the shared-memory Cilk runtime on the POWER 7 architecture. The
error bars represent the standard deviation of storage size with a sample size
of 15.
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Time Overhead: Shared Memory

Time overhead within variation in execution time
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Figure 4.4: The ratio of mean execution time with tracing versus without
tracing with a sample size of 15 on the POWER 7 architecture using the
shared-memory Cilk runtime. The error bars represent the error in the dif-
ference of means at 99% confidence, using a Student’s t-test.

4.4.3 Space Utilization

The space overhead can be quickly computed from the data structures em-
ployed in the algorithms. In the following formulæ, bh and bw describe the
total number of bytes required to trace help-first and work-first schedulers,
respectively:

bh =

nX

i=0

v(1 + si) + si(m+ k) (Total bytes for help-first)

bw =

nX

i=0

v(1 + si) + sim (Total bytes for work-first)

where n is the total number of working phases, v is the number of bytes
required for a thread identifier, si is the number of steals in a working phase,
m is the number of bytes required for a step identifier, and k is number of
bytes required to store the maximum number of tasks at a given level.

For Figures 4.5 and 4.7 that graph the storage required, we use integers to
store the thread and step identifiers, and assume that the maximum number
of tasks spawned at a given level does not exceed the size of an integer:
k = m = v = sizeof(int) = 4 bytes.
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Time Overhead: Distributed Memory

Time overhead within variation in execution time
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Figure 4.5: The storage overhead in KB/thread with our tracing scheme
using the shared-memory Cilk runtime on the POWER 7 architecture. The
error bars represent the standard deviation of storage size with a sample size
of 15.
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What can we do with a steal tree?
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Visualization

Core utilization plot over time
Cilk LU benchmark on 24 cores
Trace size <100KB
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Replay

Optimizing data locality for fork/join programs using constrained work stealing. 
SC’14.  http://dl.acm.org/citation.cfm?id=2683687
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Replay Schedulers

Strict, ordered replay (StOWS) 
Exactly reproduce the template schedule
Donation of continuations to be stolen

Strict, unordered replay (StUWS) 
Reproduce the template schedule, but allow the order to 
deviate (respecting the application’s dependencies) 

Relaxed work-stealing replay (RelWS)
Reproduce the template schedule as much as possible, but 
allow workers to deviate when they are idle, by further 
stealing work 

Sriram Krishnamoorthy23



How good are the schedulers?

Relaxed work stealing incurs some overhead because it 
combines replay and work stealing

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

heat floyd-warshall fdtd cg mg parallel prefix

Trace StOWS StUWS RelWS

Figure 6.4: Normalized execution time of four configurations (mean({Trace,
StOWS, StUWS, RelWS})/mean(Baseline)) compared to the default Cilk
scheduler. Error bars are relative standard deviation with a sample size of 5.

6.4.5 Empirical Evaluation

6.4.5.1 Measuring Overheads

We first measure the overhead of tracing and the constrained schedulers. We
compare the execution time using a baseline Cilk (MIT Cilk version 5.4.6) to
a modified version of Cilk that traces the computation using the steal tree.
Figure 6.4 shows the normalized execution time compared to the baseline
Cilk without tracing on 80 cores. We also present the normalized execution
time for the three types of constrained work stealing. We observe that trac-
ing incurs very low overhead. The heat benchmark incurs the most overhead,
about 1.5% with a standard deviation of 0.2%. The strict ordered scheduler,
which exactly reproduces the execution, speeds up execution in some cases.
For example, the floyd-warshall benchmark has a 2.1% decrease in execution
time. The strict unordered scheduler executes any ready task without regard
for the original order executed. We expect this may incur some overhead in
cases were ordering is important within the composed schedule. The scan
benchmark shows the most overhead, about 6.3% with a 2% standard devia-
tion. Finally, RelWS has the most overhead due to following the template
schedule and overriding steals. The heat benchmark has the most overhead,
incurring 10.4% with a 2.2% deviation. Although the benchmarks exhibit
overhead with RelWS, we intend to use it primarily to adapt schedules.
Hence, the overhead will be amortized once the adaptation is complete.

Figure 6.5 shows the speedup of all six benchmarks on up to 80 threads. In
the speedup plots, we do not include the data redistribution overhead because
this cost will be amortized once the schedule converges. The “Constrained
Iter. RelWS” label corresponds to the result of using our iterative data
locality optimization scheme over five iterations. The “Constrained User-
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Relaxed Work Stealing: Adaptability I

Slow down one out of 80 workers 4 times
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Relaxed Work Stealing: Adaptability II

Relaxed replay of schedule from (p-10) workers on p 
workers
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Relaxed Work Stealing: Adaptability III

Relaxed work stealing of fib(54) with a schedule from fib(48)
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Retentive Stealing

Work stealing and persistence-based load balancers for iterative overdecomposed applications.
HPDC’12   http://dl.acm.org/citation.cfm?id=2287103
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Iterative Applications

Applications repeatedly executing the same 
computation

Many scientific applications are iterative

Static or slowly evolving execution 
characteristics

Execution characteristics preclude static 
balancing

Application characteristics (comm. 
pattern, sparsity,…)
Execution environment (topology, 
asymmetry, …)

Done?

do work

Yes

No
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Proc 1

Proc 2

Proc 3

…

Proc n

Seeded Local Queues

Proc 1 Proc 2Proc 3 Proc n

Actual Executed Tasks

Intuition: Stealing indicates poor initial balance

Retentive Work Stealing

Sriram Krishnamoorthy30



Retentive stealing

Use work stealing to load balance within each phase
Persistence-based load balancers only rebalance across 
phases

Begin next iteration with a trace of the previous iteration’s 
schedule

Sriram Krishnamoorthy31



Retentive stealing results

Retentive stealing stabilizes stealing costs
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Figure 5.8: Efficiency of retentive work stealing across iterations relative to
ideal anticipated speedup and tasks per core. x-axis — core count; left y-axis
— efficiency; right y-axis — tasks per core (error bar: std. dev.)
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Figure 5.10: Average (error bar: standard deviation) number of successful
steals for the first, second, and fifth iteration of retentive stealing. x-axis —
number of cores; y-axis — average number of steals.
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Retentive Stealing Space Overhead: HF

Execution on Titan
Space overhead increase but still same manageable 
across iterations
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Figure 5.16: Retentive stealing using our tracing algorithms on recursive
specification of the SCF benchmark on Cray XK6 Titan.
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Retentive Stealing Space Overhead: TCE

Execution on Titan
Space overhead stays the same across iterations
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Figure 5.17: Retentive stealing using our tracing algorithms on recursive
specification of the TCE benchmark on Cray XK6 Titan.
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Data Locality Optimization:
NUMA Locality

Optimizing data locality for fork/join programs using constrained work stealing. 
SC’14.  http://dl.acm.org/citation.cfm?id=2683687
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Constrained Schedules in OpenMP

Loops are naturally matched, leading to good performance

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)

A[i] = B[i] = 0; //init
#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)

B[i] = A[i]; //memcpy

Empirical study

§ Parallel memory copy of 8GB of data, using OpenMP schedule static
§ 80-core system with eight NUMA domains, first-touch policy
§ Execution time: 169ms
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Cilk Scheduling

Random work stealing mismatches the initialization and 
subsequent use, causing performance degradation. 

cilk_for (i = 0; i < size; i++)
A[i] = B[i] = 0; //init

cilk_for (i = 0; i < size; i++)
B[i] = A[i]; //memcpy

Empirical study

§ Parallel memory copy of 8GB of data, using MIT Cilk or OpenMP 3.0 tasks
§ Execution time: 436ms (Cilk/OMP task) vs 169ms (OMP static)
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Can we constrain the scheduler to improve 
NUMA locality?
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Solution: Evolve a Schedule

Capture an application 
phase’s steal tree

Adapt schedule using 
relaxed work stealing

Data localization

Is load 
balanced?

Load 
imbalance 
observed?

Strict ordered replay
Yes

No

Yes

No
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Alternative Strategy: Manual Steal Tree 
Construction

Explicit markup of steal tree in the user program

Useful in non-iterative applications
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Data Redistribution Cost

First few iterations, data is redistributed (copied) to match a 
given schedule

Whole Program Locality Optimization
! Data redistribution cost (for the first few iterations)
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Benchmarks: Iterative Matching StructureWhole Program Locality Optimization
! Iterative, matching structure

heat floyd-warshall
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Extract template schedule, apply RelWS for five iterations 
until convergence, then use StOWS
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Benchmarks: Iterative Differing Structure

Start with random work stealing on kernel, refine with RelWS until 
convergence, then use StOWS
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Benchmarks: Iterative Multiple Structures

We evaluate two approaches: using the same schedule across all 
kernels, and using a different schedule for each kernel 
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Benchmarks: Non-iterative Matching 
Structure

Reuse schedule from initialization for other phases with StUWS
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Task Granularity Selection

Optimizing data locality for fork/join programs using constrained work stealing. 
SC’14.  http://dl.acm.org/citation.cfm?id=2683687
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Task granularity selection

A key challenge for task-parallel programs

Trade-off
Expose more concurrency
Achieve good sequential performance with a coarse grain 
size 
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Observation

Concurrency only need to be exposed to achieve load 
balance

Once load is balanced, exposed concurrency can be 
“turned off”

We can coax the scheduler to select coarser grained work 
units
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Iterative Granularity Selection

Start with small grain 
size

Relaxed work stealing 
à schedule

Drop steal tree leaves

Replace leaves with 
sequential (coarse) 

tasks

Needs 
coarsening

?

No

Yes
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Dynamic Granularity Selection: heat

Iterative locality optimization with grain size selection
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Dynamic Granularity Selection: cg
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Data Race Detection
t1 t2

A

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI’13 http://dl.acm.org/citation.cfm?id=2462193
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Data Race Detection

Detect conflicting operations in a fork/join program

Key check:
Determine if two memory operation can execute in parallel
For any possible schedule
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Dynamic Program Structure Tree (DPST)

Two steps s1 and s2 may execute in parallel if:
l1 is least common ancestor (LCA) of s1 and s2 in DPST
c1 is ancestor of s1 and immediate child of l1
c1 is an async node

finish {    //F1
step1;
async {   //A1
step2;
async { //A2
step3;

}
step4;

}
step5;

}
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Steal-Tree Aided LCA Computation

lca(s1, s2):
if (s1.st_node == s2.st_node)
return dpst_lca(s1,s2); //dpst walk

if (s1.st_node.level > s2.st_node.level)
return lca(s1.st_node.victim, s2)

return lca(s1, s2.st_node.victim)

The nodes of the DPST tree can be annotated with the 
nodes of steal tree they belong to
Data race detection involves multiple walks of the DPST 
for each memory access checked
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Application: Data Race Detection

Significant reduction in the number of DPST edges 
traversed
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Other Results

Locality-aware task graph scheduling
Color-based constraints on work stealing schedulers

Cache locality optimization
Effect-based splicing of concurrent tasks to improve cache 
locality

Speculative work stealing
Expose greater concurrency

Localized parallel failure recovery
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Lessons Learned

Random work stealing with ability to constrain its behavior 
can bring several benefits

Steal trees can be useful in a variety of contexts
Retentive stealing
Data locality optimization
Task granularity selection
Data race detection
…

Need to design interfaces to programmatically extract and 
use work stealing schedules
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Continuing Research Challenges

Recursive program specification
Enabling user to express high level intent and properties
Compiler analysis and transformation
Runtime techniques

Scheduling and load balancing
Fault tolerance
Power/energy efficiency
Data locality

Correctness and performance tools
Architectural and other low-level support for such 
abstractions
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Conclusions

Abstractions supporting task parallelism can meet 
performance and programmability challenges

Runtime systems can adapt productively
Changing the load balancer or adding fault tolerance 
involved no change in the user code

Maturing an execution paradigm requires lots of research 
and experience
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Thank You!
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