Runtime Support for Scalable
Task-parallel Programs

Sriram Krishnamoorthy

Pacific Northwest National Lab
xSIG workshop

May 2018

http://hpc.pnl.gov/people/sriram/

Pacific Northwest
AAAAAAAAAAAAAAAAAA

Proudly Operated by Battelle Since 1965



Single Program Multiple Data

int main () {

}




Task Parallelism
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Task-parallel Abstractions

» Finer specification of concurrency, data locality, and
dependences

m Convey more application information to compiler and
runtime

» Adaptive runtime system to manage tasks

» Application writer specifies the computation
m Writes optimizable code

» Tools to transform code to generate an efficient
implementation
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The Promise

» Application writer specifies the
computation -

» Computation mapped to specific
execution environment by the software
stack

» We are transferring some of the burden
away from the programmer
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The Challenge

» We are transferring some of the
burden to the software stack

» Handling million MPI processes is
supposed to be hard; how about
billions of tasks?

» What about the software ecosystem?

Sriram Krishnamoorthy



Tracing and Constraining Work Stealina
Schedulers

Sriram Krishnamoorthy



Research Directions

» Concurrency management and tracing
» Dynamic load balancing

» Data locality optimization

» Task granularity selection

» Data race detection
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Recursive Task Parallelism

fn() {

sl;

async { /*Alx/
S2;
finish async s3;//A2
sd;

}

async s5; //A3

S6;

Sriram Krishnamoorthy
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Work Stealing

» A worker begins with one/few
tasks

m Tasks spawn more tasks

m When a worker is out of tasks, it
steals from another worker

» A popular scheduling strategy for

recursive parallel programs

m Well-studied load balancing
strategy

m Provably efficient scheduling

m Understandable space and time
bounds

Sriram Krishnamoorthy
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Objective

» Trace execution under work stealing

» Exploit information from trace to perform various
optimizations

» Constrain the scheduler to obtain desired behavior

Sriram Krishnamoorthy
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Tracing

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI'13 http://dl.acm.org/citation.cfim?id=2462193
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Tracing Work Stealing

» When and where each task executed

» Captures the order of events for online and offline
analysis

» Challenges
m Sheer size of the trace
m Application perturbation might make it impractical

Sriram Krishnamoorthy



Tracing Approach: lllustration
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» Steals in order of levels
» Almost one steal per level
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Space Overhead: Shared Memory
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Space Overhead: Distributed Memory
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Still less than 160MB in total on 32000 cores
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: Shared Memory

Time Overhead
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Time Overhead: Distributed Memory
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What can we do with a steal tree?
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» Core utilization plot over time
» Cilk LU benchmark on 24 cores
» Trace size <100KB
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Replay

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687
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Replay Schedulers

» Strict, ordered replay (StOWS)
m Exactly reproduce the template schedule
m Donation of continuations to be stolen

» Strict, unordered replay (StUWS)

m Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)

» Relaxed work-stealing replay (RelWS)

m Reproduce the template schedule as much as possible, but
allow workers to deviate when they are idle, by further
stealing work

Sriram Krishnamoorthy
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How good are the schedulers?
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Relaxed work stealing incurs some overhead because it
combines replay and work stealing
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Relaxed Work Stealing: Adaptability |

Slow down one out of 80 workers 4 times
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Relaxed Work Stealing: Adaptability Il

Relaxed replay of schedule from (p-10) workers on p
workers
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Relaxed Work Stealing: Adaptability Il

Relaxed work stealing of fib(54) with a schedule from fib(48)
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Retentive Stealing

L_, e —————— . —_— —nemegenarator-ng

Work stealing and persistence-based load balancers for iterative overdecomposed applications.
HPDC’12 http://dl.acm.org/citation.cfm?id=2287103
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Iterative Applications

» Applications repeatedly executing the same
computation

m Many scientific applications are iterative

» Static or slowly evolving execution
characteristics

» Execution characteristics preclude static
balancing

m Application characteristics (comm.
pattern, sparsity,...)

m Execution environment (topology,
asymmetry, ...)

Yes

\No
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Retentive Work Stealing

Proc 1

Proc 2

Proc 3

Proc n

Seeded Local Queues

B

__ ||

L

Actual Executed Tasks

Proc 1 Proc 2Proc 3Proc n

Intuition: Stealing indicates poor initial balance
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Retentive stealing

» Use work stealing to load balance within each phase

m Persistence-based load balancers only rebalance across
phases

» Begin next iteration with a trace of the previous iteration’s
schedule

Sriram Krishnamoorthy
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Retentive stealing results

Parallel efficiency (%)
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Retentive stealing stabilizes stealing costs

Sriram Krishnamoorthy




33

Retentive Stealing Space Overhead: HF
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» Execution on Titan

» Space overhead increase but still same manageable

across iterations
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Retentive Stealing Space Overhead: TCE
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» Execution on Titan
» Space overhead stays the same across iterations
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Data Locality Optimization:
NUMA Locality

Optimizing data locality for fork/join programs using constrained work stealing.
SC’'14. http://dl.acm.org/citation.cfim?id=2683687
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Constrained Schedules in OpenMP

#pragma omp parallel for schedule(static)
for (1 = 0; 1 < size; i++)

A[i] = B[i] = 0; //init
#pragma omp parallel for schedule(static)

for (i = 0; i < size; i++)
B[i] = A[i]; //memcpy
| | I I
A |1[1(112|2[213|3|314(4(415|5|5
B 11]1(1]2]2|2]|3|3|3]4]|4|4]|5|5]|5
memcpyr-"TT T ittt R— VR ——— P :
thread ...\ 1.2 A 3 | 4 . 5
1 1 1 ]

Empirical study

= 80-core system with eight NUMA domains, first-touch policy

Execution time: 169ms

Parallel memory copy of 8GB of data, using OpenMP schedule static

Sriram Krishnamoorthy



Cilk Scheduling

cilk for (1 = 0; 1 < size; i++)
A[i] = B[i] = 0; //init

cilk for (1 = 0; 1 < size; i++)
B[i] = A[i]; //memcpy

A|5|2|311|2|413|4|511|5|213|1]|4
B |5|2|3!11(2|4!3|4|5!1|5|2!3|1]|4

memcpyr---r--- I g o e e e
thread hf’_h_‘_‘_‘_5_,__2_,__1__i__3__i__1__L_‘}_L?_i_§_i_?_j_?’_1__5__i__2__i__‘!_!

Empirical study

= Parallel memory copy of 8GB of data, using MIT Cilk or OpenMP 3.0 tasks
= Execution time: 436ms (Cilk/OMP task) vs 169ms (OMP static)
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Can we constrain the scheduler to improve
NUMA locality?

Sriram Krishnamoorthy
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Solution: Evolve a Schedule

|

Capture an application
phase’s steal tree

|

Is load
balanced?

Strict ordered replay ]<—

Load
imbalance

Data localization

l

Adapt schedule using
relaxed work stealing

observed?

No
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Alternative Strategy: Manual Steal Tree
Construction

» Explicit markup of steal tree in the user program

» Useful in non-iterative applications

Sriram Krishnamoorthy



Data Redistribution Cost

First few iterations, data is redistributed (copied) to match a
given schedule
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Benchmarks: Iterative Matching Structure

floyd-warshall
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until convergence, then use StOWS
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Benchmarks: Iterative Differing Structure

o0
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Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained StUWS Constrained User-Specified

e— . = =

Start with random work stealing on kernel, refine with RelWS until
convergence, then use StOWS
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Benchmarks: Iterative Multiple Structures
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kernels, and using a different schedule for each kernel
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Benchmarks: Non-iterative Matching
Structure
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Task Granularity Selection 'k
kﬂx

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687
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Task granularity selection

» A key challenge for task-parallel programs

» Trade-off

m Expose more concurrency

m Achieve good sequential performance with a coarse grain
size

Sriram Krishnamoorthy
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Observation

» Concurrency only need to be exposed to achieve load
balance

m Once load is balanced, exposed concurrency can be
“turned off”

» We can coax the scheduler to select coarser grained work
units

Sriram Krishnamoorthy
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Iterative Granularity Selection

Start with small grain
size

- schedule

{ Relaxed work stealing }

{ Drop steal tree leaves }

Yes T

Needs

coarsening
?

Replace leaves with
sequential (coarse)
tasks
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Dynamic Granularity Selection: heat
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Iterative locality optimization with grain size selection
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Dynamic Granularity Selection: cg
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Data Race Detection

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI'13 http://dl.acm.org/citation.cfim?id=2462193
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Data Race Detection

» Detect conflicting operations in a fork/join program

» Key check:
m Determine if two memory operation can execute in parallel
m For any possible schedule

Sriram Krishnamoorthy



Dynamic Program Structure Tree (DPST)

finish { //F1l
stepl;
async { / /Al

G Gy o
async { //A2

step3;

} CXCAC)

stepéd;
}

step5; <E§E>

}
» Two steps s1 and s2 may execute in parallel if:
m |1 is least common ancestor (LCA) of s1 and s2 in DPST
m c1is ancestor of s1 and immediate child of |1
m c1is an async node

F1
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Steal-Tree Aided LCA Computation

» The nodes of the DPST tree can be annotated with the
nodes of steal tree they belong to

» Data race detection involves multiple walks of the DPST
for each memory access checked

lca(sl, s2):
if (sl.st node == s2.st node)
return dpst lca(sl,s2); //dpst walk
if (sl.st node.level > s2.st node.level)
return lca(sl.st _node.victim, s2)
return lca(sl, s2.st_node.victim)

%5 Sriram Krishnamoorthy



Application: Data Race Detection
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Significant reduction in the number of DPST edges
traversed
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Other Results

» Locality-aware task graph scheduling
m Color-based constraints on work stealing schedulers

» Cache locality optimization

m Effect-based splicing of concurrent tasks to improve cache
locality

» Speculative work stealing
m Expose greater concurrency

» Localized parallel failure recovery

Sriram Krishnamoorthy
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Lessons Learned

» Random work stealing with ability to constrain its behavior
can bring several benefits

» Steal trees can be useful in a variety of contexts
m Retentive stealing
m Data locality optimization
m Task granularity selection
m Data race detection
_

» Need to design interfaces to programmatically extract and
use work stealing schedules

Sriram Krishnamoorthy
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Continuing Research Challenges

» Recursive program specification
» Enabling user to express high level intent and properties
» Compiler analysis and transformation

» Runtime techniques
m Scheduling and load balancing
m Fault tolerance
m Power/energy efficiency
m Data locality

» Correctness and performance tools

» Architectural and other low-level support for such
abstractions

Sriram Krishnamoorthy
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Conclusions

» Abstractions supporting task parallelism can meet
performance and programmability challenges

» Runtime systems can adapt productively

m Changing the load balancer or adding fault tolerance
involved no change in the user code

» Maturing an execution paradigm requires lots of research
and experience

Sriram Krishnamoorthy
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Thank You!



