Runtime Support for Scalable Task-parallel Programs

Sriram Krishnamoorthy Pacific Northwest National Lab xSIG workshop May 2018

http://hpc.pnl.gov/people/sriram/

Proudly Operated by Battelle Since 1965

Single Program Multiple Data

}

int main () {

Task Parallelism

Task Parallelism

Task-parallel Abstractions

- Finer specification of concurrency, data locality, and dependences
 - Convey more application information to compiler and runtime
- Adaptive runtime system to manage tasks
- Application writer specifies the computation
 - Writes optimizable code
- Tools to transform code to generate an efficient implementation

The Promise

- Application writer specifies the computation
- Computation mapped to specific execution environment by the software stack
- We are transferring some of the burden away from the programmer

Sriram Krishnamoorthy

The Challenge

- We are transferring some of the burden to the software stack
- Handling million MPI processes is supposed to be hard; how about billions of tasks?
- What about the software ecosystem?

Tracing and Constraining Work Stealing Schedulers

Sriram Krishnamoorthy

Research Directions

Concurrency management and tracing

- Dynamic load balancing
- Data locality optimization
- Task granularity selection
- Data race detection

Recursive Task Parallelism

Work Stealing

- A worker begins with one/few tasks
 - Tasks spawn more tasks
 - When a worker is out of tasks, it steals from another worker
- A popular scheduling strategy for recursive parallel programs
 - Well-studied load balancing strategy
 - Provably efficient scheduling
 - Understandable space and time bounds

- Trace execution under work stealing
- Exploit information from trace to perform various optimizations
- Constrain the scheduler to obtain desired behavior

Tracing

Steal tree: low-overhead tracing of work stealing schedulers. PLDI'13 <u>http://dl.acm.org/citation.cfm?id=2462193</u>

Tracing Work Stealing

When and where each task executed

Captures the order of events for online and offline analysis

Challenges

- Sheer size of the trace
- Application perturbation might make it impractical

Tracing Approach: Illustration

Steals in order of levels
Almost one steal per level

Space Overhead: Distributed Memory

Still less than 160MB in total on 32000 cores

Time Overhead: Shared Memory

Time overhead within variation in execution time

Time Overhead: Distributed Memory

Time overhead within variation in execution time

What can we do with a steal tree?

Visualization

Core utilization plot over time
 Cilk LU benchmark on 24 cores
 Trace size <100KB

Optimizing data locality for fork/join programs using constrained work stealing. SC'14. <u>http://dl.acm.org/citation.cfm?id=2683687</u>

Replay

Replay Schedulers

- Strict, ordered replay (StOWS)
 - Exactly reproduce the template schedule
 - Donation of continuations to be stolen
- Strict, unordered replay (StUWS)
 - Reproduce the template schedule, but allow the order to deviate (respecting the application's dependencies)
- Relaxed work-stealing replay (ReIWS)
 - Reproduce the template schedule as much as possible, but allow workers to deviate when they are idle, by further stealing work

How good are the schedulers?

Relaxed work stealing incurs some overhead because it combines replay and work stealing

Relaxed Work Stealing: Adaptability I

Slow down one out of 80 workers 4 times

Relaxed Work Stealing: Adaptability II

Relaxed replay of schedule from (p-10) workers on p workers

Relaxed Work Stealing: Adaptability III

Relaxed work stealing of fib(54) with a schedule from fib(48)

Retentive Stealing

Work stealing and persistence-based load balancers for iterative overdecomposed applications. HPDC'12 <u>http://dl.acm.org/citation.cfm?id=2287103</u>

Iterative Applications

- Applications repeatedly executing the same computation
 - Many scientific applications are iterative
- Static or slowly evolving execution characteristics
- Execution characteristics preclude static balancing
 - Application characteristics (comm. pattern, sparsity,...)
 - Execution environment (topology, asymmetry, ...)

Retentive Work Stealing

Intuition: Stealing indicates poor initial balance

Retentive stealing

Use work stealing to load balance within each phase
 Persistence-based load balancers only rebalance across phases

Begin next iteration with a trace of the previous iteration's schedule

Retentive stealing stabilizes stealing costs

Retentive Stealing Space Overhead: HF

Execution on Titan

Space overhead increase but still same manageable across iterations

2

Retentive Stealing Space Overhead: TCE

teration

Execution on Titan

Space overhead stays the same across iterations

Data Locality Optimization: NUMA Locality

Optimizing data locality for fork/join programs using constrained work stealing. SC'14. <u>http://dl.acm.org/citation.cfm?id=2683687</u>

Constrained Schedules in OpenMP

Empirical study

- Parallel memory copy of 8GB of data, using OpenMP schedule static
- 80-core system with eight NUMA domains, first-touch policy
- Execution time: 169ms

Cilk Scheduling

Empirical study

- Parallel memory copy of 8GB of data, using MIT Cilk or OpenMP 3.0 tasks
- Execution time: 436ms (Cilk/OMP task) vs 169ms (OMP static)

Can we constrain the scheduler to improve NUMA locality?

Solution: Evolve a Schedule

Alternative Strategy: Manual Steal Tree Construction

Explicit markup of steal tree in the user program

Useful in non-iterative applications

Data Redistribution Cost

First few iterations, data is redistributed (copied) to match a given schedule

Benchmarks: Iterative Matching Structure

Extract template schedule, apply ReIWS for five iterations until convergence, then use StOWS

Benchmarks: Iterative Differing Structure

Start with random work stealing on kernel, refine with ReIWS until convergence, then use StOWS

Benchmarks: Iterative Multiple Structures

We evaluate two approaches: using the same schedule across all kernels, and using a different schedule for each kernel

Benchmarks: Non-iterative Matching Structure

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. ReIWS Constrained StUWS Constrained User-Specified

Reuse schedule from initialization for other phases with StUWS

Task Granularity Selection

Optimizing data locality for fork/join programs using constrained work stealing. SC'14. <u>http://dl.acm.org/citation.cfm?id=2683687</u>

Task granularity selection

A key challenge for task-parallel programs

Trade-off

- Expose more concurrency
- Achieve good sequential performance with a coarse grain size

Observation

- Concurrency only need to be exposed to achieve load balance
 - Once load is balanced, exposed concurrency can be "turned off"
- We can coax the scheduler to select coarser grained work units

Iterative Granularity Selection

Dynamic Granularity Selection: heat

Iterative locality optimization with grain size selection

Dynamic Granularity Selection: cg

Sriram Krishnamoorthy

Data Race Detection

Steal tree: low-overhead tracing of work stealing schedulers. PLDI'13 <u>http://dl.acm.org/citation.cfm?id=2462193</u>

Data Race Detection

Detect conflicting operations in a fork/join program

Key check:

- Determine if two memory operation can execute in parallel
- For any possible schedule

Dynamic Program Structure Tree (DPST)

Two steps s1 and s2 may execute in parallel if:
 I1 is least common ancestor (LCA) of s1 and s2 in DPST
 c1 is ancestor of s1 and immediate child of I1
 c1 is an async node

Steal-Tree Aided LCA Computation

- The nodes of the DPST tree can be annotated with the nodes of steal tree they belong to
- Data race detection involves multiple walks of the DPST for each memory access checked

```
lca(s1, s2):
    if (s1.st_node == s2.st_node)
        return dpst_lca(s1,s2); //dpst walk
    if (s1.st_node.level > s2.st_node.level)
        return lca(s1.st_node.victim, s2)
    return lca(s1, s2.st_node.victim)
```

Application: Data Race Detection

Significant reduction in the number of DPST edges traversed

Other Results

Locality-aware task graph scheduling

Color-based constraints on work stealing schedulers

- Cache locality optimization
 - Effect-based splicing of concurrent tasks to improve cache locality
- Speculative work stealing
 Expose greater concurrency

Localized parallel failure recovery

Lessons Learned

Random work stealing with ability to constrain its behavior can bring several benefits

Steal trees can be useful in a variety of contexts

- Retentive stealing
- Data locality optimization
- Task granularity selection
- Data race detection

. . . .

Need to design interfaces to programmatically extract and use work stealing schedules

Continuing Research Challenges

- Recursive program specification
- Enabling user to express high level intent and properties
- Compiler analysis and transformation
- Runtime techniques
 - Scheduling and load balancing
 - Fault tolerance
 - Power/energy efficiency
 - Data locality
- Correctness and performance tools
- Architectural and other low-level support for such abstractions

Conclusions

- Abstractions supporting task parallelism can meet performance and programmability challenges
- Runtime systems can adapt productively
 - Changing the load balancer or adding fault tolerance involved no change in the user code
- Maturing an execution paradigm requires lots of research and experience

Thank You!