Runtime Support for Scalable
Task-parallel Programs

Sriram Krishnamoorthy

Pacific Northwest National Lab
xSIG workshop

May 2018

http://hpc.pnl.gov/people/sriram/

Pacific Northwest
AAAAAAAAAAAAAAAAAA

Proudly Operated by Battelle Since 1965

Single Program Multiple Data

int main () {

}

Task Parallelism

L
L o W T
ol L
L o S
o =

{

()

o

o

o

Task Parallelism

L
L o W T
e W
o R e
o =

{

()

o

o

o

Task-parallel Abstractions

» Finer specification of concurrency, data locality, and
dependences

m Convey more application information to compiler and
runtime

» Adaptive runtime system to manage tasks

» Application writer specifies the computation
m Writes optimizable code

» Tools to transform code to generate an efficient
implementation

Sriram Krishnamoorthy

The Promise

» Application writer specifies the
computation -

» Computation mapped to specific
execution environment by the software
stack

» We are transferring some of the burden
away from the programmer

Sriram Krishnamoorthy

The Challenge

» We are transferring some of the
burden to the software stack

» Handling million MPI processes is
supposed to be hard; how about
billions of tasks?

» What about the software ecosystem?

Sriram Krishnamoorthy

Tracing and Constraining Work Stealina
Schedulers

Sriram Krishnamoorthy

Research Directions

» Concurrency management and tracing
» Dynamic load balancing

» Data locality optimization

» Task granularity selection

» Data race detection

10

Recursive Task Parallelism

fn() {

sl;

async { /*Alx/
S2;
finish async s3;//A2
sd;

}

async s5; //A3

S6;

Sriram Krishnamoorthy

11

Work Stealing

» A worker begins with one/few
tasks

m Tasks spawn more tasks

m When a worker is out of tasks, it
steals from another worker

» A popular scheduling strategy for

recursive parallel programs

m Well-studied load balancing
strategy

m Provably efficient scheduling

m Understandable space and time
bounds

Sriram Krishnamoorthy

12

Objective

» Trace execution under work stealing

» Exploit information from trace to perform various
optimizations

» Constrain the scheduler to obtain desired behavior

Sriram Krishnamoorthy

13

Tracing

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI'13 http://dl.acm.org/citation.cfim?id=2462193

Sriram Krishnamoorthy

14

Tracing Work Stealing

» When and where each task executed

» Captures the order of events for online and offline
analysis

» Challenges
m Sheer size of the trace
m Application perturbation might make it impractical

Sriram Krishnamoorthy

Tracing Approach: lllustration

OB

—t —

_>Q-b-> C>...)
v >

G

D task O async ->step

» Steals in order of levels
» Almost one steal per level

15

—> steal

Sriram Krishnamoorthy

Space Overhead: Shared Memory

l /+10 T T T T T T
¢ Enum 3 StealTree: 20 Cores
le+09 £ StealTree: 2 Cores EXX1 StealTree: 40 Cores
le 108 StealTree: 4 Cores StealTree: 80 Cores =
StealTree: 10 Cores E=XI _ N
le+07 §
210106 f)
Cofes / /
g - 7 7 1
5 le+03 ' / ? g g
7 7 7 7 /
let02 f 7 7 7 7 7 7
11BN RN 1 7 7
let01 F % g g % ? g ?
/ / /
'} L T
n=1k n=2k n=1k n=2k n=1k n=2k
z=10k 7z=20k z=10k 7z=20k z=10k 7z=20k
bh=8 b=8 b=4 b=4 b=2 b=2
Cholesky

1MB

le+11 T T T T T T
Enum 3 StealTree: 20 Cores
let10 F StealTree: 2 Cores EXX1 StealTree: 40 Cores
1le109 F StealTree: 4 Cores StealTree: 80 Cores M
StealTree: 10 Cores E=X1 M
le+08 F
m1e+07 F _
=
o 1le+006 ¥ _
2 1et05
n
= let+04
@ le+03
le+02 7 7 Y
7 / / / / f
le+01 | g g g g g g
ol (e L TR (L
01 FRENA /) % /) /
n=35 n=3 n=35 n=43 n=43 n=43
b=10 b=5 b=1 b=10 b=5 b=1
Fib

Small trace sizes, less affected by core count or problem

size

16

Sriram Krishnamoorthy

17

Space Overhead: Distributed Memory

T
2000 Cores 1
4000 Cores EXxX

4 [8000 Cores BERXXXXA
16000 Cores E——3 _
3 [32000 Cores =2 <_—-

KB/Core

T

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF

Still less than 160MB in total on 32000 cores

Sriram Krishnamoorthy

: Shared Memory

Time Overhead

POOOOP X XXX

v avavavavara RO

32 Threads =Z=3
64 Threads E=
96 Threads ZZZZZZA
120 Threads E==3

2 Threads C—
4 Threads XX

8 Threads BEXXXXA
16 Th_r_eads ——1

1 B

1.6
15 F
14 F

13

1.2 —

11 F

0.9 F

0.8 F

0.7 F

0.6 &

Fib FFT Strassen NBody Cholesky LU Matmul

Heat

AllQueens

Time overhead within variation in execution time

Sriram Krishnamoorthy

18

19

Time Overhead: Distributed Memory

15
14 F
1.3 B

1.2
1.1

0.9
0.8
0.7
0.6

0.5 E

Time overhead within variation in execution time

T
3 2000 Cores ——
4000 Cores XX
3 8000 Cores EXXXXXA
16000 Cores ——1
32000 Cores =32

g i oy .

!
)

3
H

‘v
R

&
KRR

LXK
R

2

K&

T

3
R

X

g e I, -]

H

AQ-HF AQ-WF

SCF-HF

SCF-WF

TCE-HF

TC

E-W

F

PG-HF

PG-WF

Sriram Krishnamoorthy

20

What can we do with a steal tree?

Sriram Krishnamoorthy

Vlsuallzatlon

l

\ Wl .ll ‘ "
2. 889

» Core utilization plot over time
» Cilk LU benchmark on 24 cores
» Trace size <100KB

21 Sriram Krishnamoorthy

22

Replay

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687

Sriram Krishnamoorthy

23

Replay Schedulers

» Strict, ordered replay (StOWS)
m Exactly reproduce the template schedule
m Donation of continuations to be stolen

» Strict, unordered replay (StUWS)

m Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)

» Relaxed work-stealing replay (RelWS)

m Reproduce the template schedule as much as possible, but
allow workers to deviate when they are idle, by further
stealing work

Sriram Krishnamoorthy

24

How good are the schedulers?

1.3
1.2
1.1

0.9
0.8

0.7 E

| | | |
Trace EEEZEE] StOWS L] StUWS [] RelWS [N

3 *I*{% = T _‘;% e [== ‘I,%‘% 3
heat floyd-warshall fdtd cg mg parallel prefix

Relaxed work stealing incurs some overhead because it
combines replay and work stealing

Sriram Krishnamoorthy

Relaxed Work Stealing: Adaptability |

Slow down one out of 80 workers 4 times

D
' fib(48) =1
fib(48) StOWS, slow worker 1

4 F fib(48) RelWS, slow worker 222271 -
E/ :]
23t :
=
= |
S}
=2 i
Sl
2|
1 |

1} T _

7
0

25 Sriram Krishnamoorthy

Relaxed Work Stealing: Adaptability Il

Relaxed replay of schedule from (p-10) workers on p
workers

5 | fib(iLS) default pl 10 Threads EXZZ==)
f1b(48) default p Threads E=EZEzm |
— fib(48) RelWS(p-10) on p 22222
! '
N
=3 F i
= |
S}
22} :
)
oo
]
1t % :
0

26 Sriram Krishnamoorthy

27

Relaxed Work Stealing: Adaptability Il

Relaxed work stealing of fib(54) with a schedule from fib(48)

1.3 |

1.2

0.9

0.8

0.7 L

1.1}

1

Trace =z StUWS

A

L StOWS | | RelWS | |
5 T
T

fib(48) fib(48+6)

Sriram Krishnamoorthy

28

| DON'T ALWAYS HAVE |
- SHORT:TERM MEMOHY ,
wssfnurwum 100

|
i i
Iy
| A
.

Retentive Stealing

L_, e —————— . —_— —nemegenarator-ng

Work stealing and persistence-based load balancers for iterative overdecomposed applications.
HPDC’12 http://dl.acm.org/citation.cfm?id=2287103

Sriram Krishnamoorthy

29

Iterative Applications

» Applications repeatedly executing the same
computation

m Many scientific applications are iterative

» Static or slowly evolving execution
characteristics

» Execution characteristics preclude static
balancing

m Application characteristics (comm.
pattern, sparsity,...)

m Execution environment (topology,
asymmetry, ...)

Yes

\No

Sriram Krishnamoorthy

30

Retentive Work Stealing

Proc 1

Proc 2

Proc 3

Proc n

Seeded Local Queues

B

__ ||

L

Actual Executed Tasks

Proc 1 Proc 2Proc 3Proc n

Intuition: Stealing indicates poor initial balance

Sriram Krishnamoorthy

31

Retentive stealing

» Use work stealing to load balance within each phase

m Persistence-based load balancers only rebalance across
phases

» Begin next iteration with a trace of the previous iteration’s
schedule

Sriram Krishnamoorthy

32

Retentive stealing results

Parallel efficiency (%)

100

9
80 |
70 |
60 |
50
40
30 |
20 |
10

FFGELTEIEERR 2. PP

'~
~.
! ~.
~.
~.
~.
~.

StealRet-1 —+— " ON--h
StealRet-2 ---X---
Steal Ret_s E

StealRet-10

StealRet-14 ---A---
_Avg. tasks +-----

8000 16000 32000 64000 128000
"~ Core count

2000

1 1500

2109 Jad syse|

200

—
(&)
o

Num. successful steals
()]
o

0

100

SuccSteals-1 —+—
SuccSteals-2 +---¥----
SuccSteals-5 - f}-

L e e o C— X |
8000 16000 32000 64000 128000
Core count

Retentive stealing stabilizes stealing costs

Sriram Krishnamoorthy

33

Retentive Stealing Space Overhead: HF

3.5
2000 Cores —+—16000 Cores ©-
3 F 4000 Cores -—*-- 32000 Cores -4
. 8000 Cores -+ 64000 Cores --9--
52.5
L
815 ¢
(72]
IR
05}
0 ,
2 4 6 8 10
Iteration

» Execution on Titan

» Space overhead increase but still same manageable

across iterations

Sriram Krishnamoorthy

Retentive Stealing Space Overhead: TCE

2000 Cores —— 16000 Cores @
4000 Cores --*--32000 Cores --&--
- 8000 Cores -3+ 64000 Cores --©--

o
o0

S
o

Trace size (KB/core)

<

=~
x
H
X
i
*
X
\
*

9
$
$
$
¢
¢
!
’

Iteration

» Execution on Titan
» Space overhead stays the same across iterations

Sriram Krishnamoorthy

35

Data Locality Optimization:
NUMA Locality

Optimizing data locality for fork/join programs using constrained work stealing.
SC’'14. http://dl.acm.org/citation.cfim?id=2683687

Sriram Krishnamoorthy

36

Constrained Schedules in OpenMP

#pragma omp parallel for schedule(static)
for (1 = 0; 1 < size; i++)

A[i] = B[i] = 0; //init
#pragma omp parallel for schedule(static)

for (i = 0; i < size; i++)
B[i] = A[i]; //memcpy
| | I I
A |1[1(112|2[213|3|314(4(415|5|5
B 11]1(1]2]2|2]|3|3|3]4]|4|4]|5|5]|5
memcpyr-"TT T ittt R— VR ——— P :
thread ...\ 1.2 A 3 | 4 . 5
1 1 1]

Empirical study

= 80-core system with eight NUMA domains, first-touch policy

Execution time: 169ms

Parallel memory copy of 8GB of data, using OpenMP schedule static

Sriram Krishnamoorthy

Cilk Scheduling

cilk for (1 = 0; 1 < size; i++)
A[i] = B[i] = 0; //init

cilk for (1 = 0; 1 < size; i++)
B[i] = A[i]; //memcpy

A|5|2|311|2|413|4|511|5|213|1]|4
B |5|2|3!11(2|4!3|4|5!1|5|2!3|1]|4

memcpyr---r--- I g o e e e
thread hf’_h_‘_‘_‘_5_,__2_,__1__i__3__i__1__L_‘}_L?_i_§_i_?_j_?’_1__5__i__2__i__‘!_!

Empirical study

= Parallel memory copy of 8GB of data, using MIT Cilk or OpenMP 3.0 tasks
= Execution time: 436ms (Cilk/OMP task) vs 169ms (OMP static)

37 Sriram Krishnamoorthy

38

Can we constrain the scheduler to improve
NUMA locality?

Sriram Krishnamoorthy

39

Solution: Evolve a Schedule

|

Capture an application
phase’s steal tree

|

Is load
balanced?

Strict ordered replay]<—

Load
imbalance

Data localization

l

Adapt schedule using
relaxed work stealing

observed?

No

Sriram Krishnamoorthy

40

Alternative Strategy: Manual Steal Tree
Construction

» Explicit markup of steal tree in the user program

» Useful in non-iterative applications

Sriram Krishnamoorthy

Data Redistribution Cost

First few iterations, data is redistributed (copied) to match a
given schedule

30 L T T T
fdtd ——>&—
25 floyd-warshall —A—

heat —f——

DO
o

Execution time (sec)
— —
(@) ot

(@)
T

o

Number of threads

41 Sriram Krishnamoorthy

Benchmarks: Iterative Matching Structure

floyd-warshall

40 ™7 40 — ; . »
35 135 +]
30 130 +) E
25 195 ’]
§ ‘)
; g L L 4
: 20 %
15 F A 115t |
10 110 t 75 |
-~
St 151+ = 5 1
7
&
0 1 1 1 1 1 0 N N N N
14 10 20 40 30 14 10 20 40 80
Number of Threads Number of Threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained User-Specified

—O— —A P ——

Extract template schedule, apply RelWS for five iterations
until convergence, then use StOWS

42 Sriram Krishnamoorthy

Benchmarks: Iterative Differing Structure

o0

14 10 20 40 &0
Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained StUWS Constrained User-Specified

e— . = =

Start with random work stealing on kernel, refine with RelWS until
convergence, then use StOWS

43 Sriram Krishnamoorthy

Benchmarks: Iterative Multiple Structures

35

14 10 20 40 &0
Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained StUWS Constrained User-Specified

—0— —& - . —X—
We evaluate two approaches: using the same schedule across all

kernels, and using a different schedule for each kernel

a4 Sriram Krishnamoorthy

Benchmarks: Non-iterative Matching
Structure

15 |
10
35 |
a0 |
D o5 &
(]
o

B 20 |
15t
10t

1 1 1 1
14 10 20 40 80
Number of threads
Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained StUWS Constrained User-Specified

O— —A — —S>— ——
Reuse schedule from initialization for other phases with StUWS

4% Sriram Krishnamoorthy

46

Task Granularity Selection 'k
kﬂx

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687

Sriram Krishnamoorthy

47

Task granularity selection

» A key challenge for task-parallel programs

» Trade-off

m Expose more concurrency

m Achieve good sequential performance with a coarse grain
size

Sriram Krishnamoorthy

48

Observation

» Concurrency only need to be exposed to achieve load
balance

m Once load is balanced, exposed concurrency can be
“turned off”

» We can coax the scheduler to select coarser grained work
units

Sriram Krishnamoorthy

49

Iterative Granularity Selection

Start with small grain
size

- schedule

{ Relaxed work stealing }

{ Drop steal tree leaves }

Yes T

Needs

coarsening
?

Replace leaves with
sequential (coarse)
tasks

Sriram Krishnamoorthy

Dynamic Granularity Selection: heat

45 T T T T
64x8192-Block Iterative ———

401 64x1024-Block Tterative —— i

35 F 64x256-Block Tterative —Ax— -

a0 | 64x256-Block Dynamic —f—— |
Q 10000 £ 64x512 B3 64x8k EEG4x16k =23 =
R 1 = 1000 £
820 I 1 2 100 :
w) 10 = <

15 F -

10 . !

sample 1 sample 2 sample 3
5 -
0

14 10 20 40 30
Number of threads

Iterative locality optimization with grain size selection

50 Sriram Krishnamoorthy

Dynamic Granularity Selection: cg

1024-Rows Iterative ——
[128-Rows Iterative ——>&—
32-Rows Iterative —A—

32-Rows Dynamic —f——

Speedup

/N
1

14 10 20 40
Number of threads

51

80

Count

10000

1000;
100
103

32 Rows E= 4k Rows EZ
512 Rows EA 16k Rows

% B

sample 1 sample 2 sample 3

Sriram Krishnamoorthy

52

Data Race Detection

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI'13 http://dl.acm.org/citation.cfim?id=2462193

Sriram Krishnamoorthy

53

Data Race Detection

» Detect conflicting operations in a fork/join program

» Key check:
m Determine if two memory operation can execute in parallel
m For any possible schedule

Sriram Krishnamoorthy

Dynamic Program Structure Tree (DPST)

finish { //F1l
stepl;
async { / /Al

G Gy o
async { //A2

step3;

} CXCAC)

stepéd;
}

step5; <E§E>

}
» Two steps s1 and s2 may execute in parallel if:
m |1 is least common ancestor (LCA) of s1 and s2 in DPST
m c1is ancestor of s1 and immediate child of |1
m c1is an async node

F1

o4 Sriram Krishnamoorthy

Steal-Tree Aided LCA Computation

» The nodes of the DPST tree can be annotated with the
nodes of steal tree they belong to

» Data race detection involves multiple walks of the DPST
for each memory access checked

lca(sl, s2):
if (sl.st node == s2.st node)
return dpst lca(sl,s2); //dpst walk
if (sl.st node.level > s2.st node.level)
return lca(sl.st _node.victim, s2)
return lca(sl, s2.st_node.victim)

%5 Sriram Krishnamoorthy

Application: Data Race Detection

100 [T T T | |]
cC X 2 Threads — ’
O - 4 Threads XX]
80 8 Threads E=z=a .
S 16 Threads ——3 .
O s E 32 Threads =2 7]
EGKJ - 64 Threads By ::: -

[96 Threads ZZZZZZ21 ::: 1
T 40 120 Threads E==3 Nt’g -
() [| ngg]
O [-] o |
buet - “:02
O 20 R 7
o [a:.:]

L ‘:.0‘ -

[R .

0
AllQueens NBody Matmul

Significant reduction in the number of DPST edges
traversed

56 Sriram Krishnamoorthy

57

Other Results

» Locality-aware task graph scheduling
m Color-based constraints on work stealing schedulers

» Cache locality optimization

m Effect-based splicing of concurrent tasks to improve cache
locality

» Speculative work stealing
m Expose greater concurrency

» Localized parallel failure recovery

Sriram Krishnamoorthy

58

Lessons Learned

» Random work stealing with ability to constrain its behavior
can bring several benefits

» Steal trees can be useful in a variety of contexts
m Retentive stealing
m Data locality optimization
m Task granularity selection
m Data race detection
_

» Need to design interfaces to programmatically extract and
use work stealing schedules

Sriram Krishnamoorthy

59

Continuing Research Challenges

» Recursive program specification
» Enabling user to express high level intent and properties
» Compiler analysis and transformation

» Runtime techniques
m Scheduling and load balancing
m Fault tolerance
m Power/energy efficiency
m Data locality

» Correctness and performance tools

» Architectural and other low-level support for such
abstractions

Sriram Krishnamoorthy

60

Conclusions

» Abstractions supporting task parallelism can meet
performance and programmability challenges

» Runtime systems can adapt productively

m Changing the load balancer or adding fault tolerance
involved no change in the user code

» Maturing an execution paradigm requires lots of research
and experience

Sriram Krishnamoorthy

61

Thank You!

