
Runtime Support for Scalable
Task-parallel Programs
Sriram Krishnamoorthy
Pacific Northwest National Lab
xSIG workshop
May 2018

http://hpc.pnl.gov/people/sriram/

Single Program Multiple Data

int main () {
...

}

Sriram Krishnamoorthy2

Task Parallelism
int main () {
...

}

Sriram Krishnamoorthy3

Task Parallelism
int main () {
...

}

Sriram Krishnamoorthy4

Task-parallel Abstractions

Finer specification of concurrency, data locality, and
dependences

Convey more application information to compiler and
runtime

Adaptive runtime system to manage tasks

Application writer specifies the computation
Writes optimizable code

Tools to transform code to generate an efficient
implementation

Sriram Krishnamoorthy5

The Promise

Application writer specifies the
computation

Computation mapped to specific
execution environment by the software
stack

We are transferring some of the burden
away from the programmer

Sriram Krishnamoorthy6

The Challenge

We are transferring some of the
burden to the software stack

Handling million MPI processes is
supposed to be hard; how about
billions of tasks?

What about the software ecosystem?

Sriram Krishnamoorthy7

Tracing and Constraining Work Stealing
Schedulers

Sriram Krishnamoorthy8

Research Directions

Concurrency management and tracing

Dynamic load balancing

Data locality optimization

Task granularity selection

Data race detection

9

Recursive Task Parallelism

fn() {
s1;
async { /*A1*/
s2;
finish async s3;//A2
s4;

}
async s5; //A3
s6;

}

S

PA1s1

s2

PA2

s3

s4

S
PA3

s5 s6
S

Sriram Krishnamoorthy10

Work Stealing

A worker begins with one/few
tasks

Tasks spawn more tasks
When a worker is out of tasks, it
steals from another worker

A popular scheduling strategy for
recursive parallel programs

Well-studied load balancing
strategy
Provably efficient scheduling
Understandable space and time
bounds

Sriram Krishnamoorthy11

Objective

Trace execution under work stealing

Exploit information from trace to perform various
optimizations

Constrain the scheduler to obtain desired behavior

Sriram Krishnamoorthy12

Tracing

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI’13 http://dl.acm.org/citation.cfm?id=2462193

Sriram Krishnamoorthy13

Tracing Work Stealing

When and where each task executed

Captures the order of events for online and offline
analysis

Challenges
Sheer size of the trace
Application perturbation might make it impractical

Sriram Krishnamoorthy14

Tracing Approach: Illustration

Steals in order of levels
Almost one steal per level

…

task async step steal

a

b

…

…c

a
bc

Deque

Sriram Krishnamoorthy15

Space Overhead: Shared Memory

Small trace sizes, less affected by core count or problem
size

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

nq=14
b=6

nq=14
b=3

nq=14
b=1

nq=15
b=6

nq=15
b=3

nq=15
b=1

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(a) AllQueens

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

n=35
b=10

n=35
b=5

n=35
b=1

n=43
b=10

n=43
b=5

n=43
b=1

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(b) Fib

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

n=1k
z=10k
b=8

n=2k
z=20k
b=8

n=1k
z=10k
b=4

n=2k
z=20k
b=4

n=1k
z=10k
b=2

n=2k
z=20k
b=2

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(c) Cholesky

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

n=16k2

c=8
n=32k2

c=8
n=16k2

c=4
n=32k2

c=4
n=16k2

c=1
n=32k2

c=1

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(d) Heat

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

n=30002

b=64
n=40002

b=64
n=30002

b=16
n=40002

b=16
n=30002

b=8
n=40002

b=8

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(e) Matmul

Figure 4.10: Space comparison between naïvely tracing tasks using explicit
enumeration (Enum) and using the proposed tracing framework (the steal
tree). Using the steal tree to trace each application requires orders of mag-
nitude less storage than naïve tracing.

39

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

nq=14
b=6

nq=14
b=3

nq=14
b=1

nq=15
b=6

nq=15
b=3

nq=15
b=1

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(a) AllQueens

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

n=35
b=10

n=35
b=5

n=35
b=1

n=43
b=10

n=43
b=5

n=43
b=1

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(b) Fib

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

n=1k
z=10k
b=8

n=2k
z=20k
b=8

n=1k
z=10k
b=4

n=2k
z=20k
b=4

n=1k
z=10k
b=2

n=2k
z=20k
b=2

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(c) Cholesky

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

n=16k2

c=8
n=32k2

c=8
n=16k2

c=4
n=32k2

c=4
n=16k2

c=1
n=32k2

c=1

T
ot

al
 S

pa
ce

 (
kB

)
Enum

StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(d) Heat

0.1

1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

n=30002

b=64
n=40002

b=64
n=30002

b=16
n=40002

b=16
n=30002

b=8
n=40002

b=8

T
ot

al
 S

pa
ce

 (
kB

)

Enum
StealTree: 2 Cores
StealTree: 4 Cores

StealTree: 10 Cores

StealTree: 20 Cores
StealTree: 40 Cores
StealTree: 80 Cores

(e) Matmul

Figure 4.10: Space comparison between naïvely tracing tasks using explicit
enumeration (Enum) and using the proposed tracing framework (the steal
tree). Using the steal tree to trace each application requires orders of mag-
nitude less storage than naïve tracing.

39

Cholesky Fib

10MB
1MB

Sriram Krishnamoorthy16

Space Overhead: Distributed Memory

Still less than 160MB in total on 32000 cores

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

AllQueens Heat Fib FFT Strassen NBody

K
B

/
T

h
re

a
d

2 Threads
4 Threads
8 Threads

16 Threads
32 Threads
64 Threads
96 Threads

120 Threads

 0

 10

 20

 30

 40

 50

 60

Cholesky LU Matmul

Figure 4.5: The storage overhead in KB/thread with our tracing scheme
using the shared-memory Cilk runtime on the POWER 7 architecture. The
error bars represent the standard deviation of storage size with a sample size
of 15.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Figure 4.6: The ratio of mean execution time with tracing versus without
tracing with a sample size of 15 on Cray XK6 Titan in distributed-memory.
The error bars represent the error in the difference of means at 99% confi-
dence, using a Student’s t-test.

 0

 1

 2

 3

 4

 5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

K
B

/C
or

e

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Figure 4.7: The storage overhead in KB/core with our tracing scheme for
distributed-memory on Cray XK6 Titan. The error bars represent the stan-
dard deviation of storage size with a sample size of 15.

31

Sriram Krishnamoorthy17

Time Overhead: Shared Memory

Time overhead within variation in execution time

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AllQueens Heat Fib FFT Strassen NBody Cholesky LU Matmul

2 Threads
4 Threads
8 Threads

16 Threads

32 Threads
64 Threads
96 Threads

120 Threads

Figure 4.4: The ratio of mean execution time with tracing versus without
tracing with a sample size of 15 on the POWER 7 architecture using the
shared-memory Cilk runtime. The error bars represent the error in the dif-
ference of means at 99% confidence, using a Student’s t-test.

4.4.3 Space Utilization

The space overhead can be quickly computed from the data structures em-
ployed in the algorithms. In the following formulæ, bh and bw describe the
total number of bytes required to trace help-first and work-first schedulers,
respectively:

bh =

nX

i=0

v(1 + si) + si(m+ k) (Total bytes for help-first)

bw =

nX

i=0

v(1 + si) + sim (Total bytes for work-first)

where n is the total number of working phases, v is the number of bytes
required for a thread identifier, si is the number of steals in a working phase,
m is the number of bytes required for a step identifier, and k is number of
bytes required to store the maximum number of tasks at a given level.

For Figures 4.5 and 4.7 that graph the storage required, we use integers to
store the thread and step identifiers, and assume that the maximum number
of tasks spawned at a given level does not exceed the size of an integer:
k = m = v = sizeof(int) = 4 bytes.

30

Sriram Krishnamoorthy18

Time Overhead: Distributed Memory

Time overhead within variation in execution time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

AllQueens Heat Fib FFT Strassen NBody

K
B

/
T

h
re

a
d

2 Threads
4 Threads
8 Threads

16 Threads
32 Threads
64 Threads
96 Threads

120 Threads

 0

 10

 20

 30

 40

 50

 60

Cholesky LU Matmul

Figure 4.5: The storage overhead in KB/thread with our tracing scheme
using the shared-memory Cilk runtime on the POWER 7 architecture. The
error bars represent the standard deviation of storage size with a sample size
of 15.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Figure 4.6: The ratio of mean execution time with tracing versus without
tracing with a sample size of 15 on Cray XK6 Titan in distributed-memory.
The error bars represent the error in the difference of means at 99% confi-
dence, using a Student’s t-test.

 0

 1

 2

 3

 4

 5

AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF PG-WF

K
B

/C
or

e

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores

Figure 4.7: The storage overhead in KB/core with our tracing scheme for
distributed-memory on Cray XK6 Titan. The error bars represent the stan-
dard deviation of storage size with a sample size of 15.

31

Sriram Krishnamoorthy19

What can we do with a steal tree?

Sriram Krishnamoorthy20

Visualization

Core utilization plot over time
Cilk LU benchmark on 24 cores
Trace size <100KB

 0

 20

 40

 60

 80

 100

0 0.1445 0.289 0.4334 0.5779 0.7224 0.8669 1.0113 1.1558 1.3003 1.4448 1.5892 1.7337 1.8782 2.0227 2.1671 2.3116 2.4561 2.6006 2.745 2.8895

Sriram Krishnamoorthy21

Replay

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687

Sriram Krishnamoorthy22

Replay Schedulers

Strict, ordered replay (StOWS)
Exactly reproduce the template schedule
Donation of continuations to be stolen

Strict, unordered replay (StUWS)
Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)

Relaxed work-stealing replay (RelWS)
Reproduce the template schedule as much as possible, but
allow workers to deviate when they are idle, by further
stealing work

Sriram Krishnamoorthy23

How good are the schedulers?

Relaxed work stealing incurs some overhead because it
combines replay and work stealing

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

heat floyd-warshall fdtd cg mg parallel prefix

Trace StOWS StUWS RelWS

Figure 6.4: Normalized execution time of four configurations (mean({Trace,
StOWS, StUWS, RelWS})/mean(Baseline)) compared to the default Cilk
scheduler. Error bars are relative standard deviation with a sample size of 5.

6.4.5 Empirical Evaluation

6.4.5.1 Measuring Overheads

We first measure the overhead of tracing and the constrained schedulers. We
compare the execution time using a baseline Cilk (MIT Cilk version 5.4.6) to
a modified version of Cilk that traces the computation using the steal tree.
Figure 6.4 shows the normalized execution time compared to the baseline
Cilk without tracing on 80 cores. We also present the normalized execution
time for the three types of constrained work stealing. We observe that trac-
ing incurs very low overhead. The heat benchmark incurs the most overhead,
about 1.5% with a standard deviation of 0.2%. The strict ordered scheduler,
which exactly reproduces the execution, speeds up execution in some cases.
For example, the floyd-warshall benchmark has a 2.1% decrease in execution
time. The strict unordered scheduler executes any ready task without regard
for the original order executed. We expect this may incur some overhead in
cases were ordering is important within the composed schedule. The scan
benchmark shows the most overhead, about 6.3% with a 2% standard devia-
tion. Finally, RelWS has the most overhead due to following the template
schedule and overriding steals. The heat benchmark has the most overhead,
incurring 10.4% with a 2.2% deviation. Although the benchmarks exhibit
overhead with RelWS, we intend to use it primarily to adapt schedules.
Hence, the overhead will be amortized once the adaptation is complete.

Figure 6.5 shows the speedup of all six benchmarks on up to 80 threads. In
the speedup plots, we do not include the data redistribution overhead because
this cost will be amortized once the schedule converges. The “Constrained
Iter. RelWS” label corresponds to the result of using our iterative data
locality optimization scheme over five iterations. The “Constrained User-

99

Sriram Krishnamoorthy24

Relaxed Work Stealing: Adaptability I

Slow down one out of 80 workers 4 times

 0

 1

 2

 3

 4

 5

E
xe

cu
ti

on
 T

im
e

(s
)

fib(48)
fib(48) StOWS, slow worker
fib(48) RelWS, slow worker

Sriram Krishnamoorthy25

Relaxed Work Stealing: Adaptability II

Relaxed replay of schedule from (p-10) workers on p
workers

 0

 1

 2

 3

 4

 5

p = 20 p = 40 p = 60

E
xe

cu
ti
on

 T
im

e
(s

)
fib(48) default p-10 Threads

fib(48) default p Threads
fib(48) RelWS(p-10) on p

Sriram Krishnamoorthy26

Relaxed Work Stealing: Adaptability III

Relaxed work stealing of fib(54) with a schedule from fib(48)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

fib(48) fib(48+6)

Trace
StOWS

StUWS
RelWS

Sriram Krishnamoorthy27

Retentive Stealing

Work stealing and persistence-based load balancers for iterative overdecomposed applications.
HPDC’12 http://dl.acm.org/citation.cfm?id=2287103

Sriram Krishnamoorthy28

Iterative Applications

Applications repeatedly executing the same
computation

Many scientific applications are iterative

Static or slowly evolving execution
characteristics

Execution characteristics preclude static
balancing

Application characteristics (comm.
pattern, sparsity,…)
Execution environment (topology,
asymmetry, …)

Done?

do work

Yes

No

Sriram Krishnamoorthy29

Proc 1

Proc 2

Proc 3

…

Proc n

Seeded Local Queues

Proc 1 Proc 2Proc 3 Proc n

Actual Executed Tasks

Intuition: Stealing indicates poor initial balance

Retentive Work Stealing

Sriram Krishnamoorthy30

Retentive stealing

Use work stealing to load balance within each phase
Persistence-based load balancers only rebalance across
phases

Begin next iteration with a trace of the previous iteration’s
schedule

Sriram Krishnamoorthy31

Retentive stealing results

Retentive stealing stabilizes stealing costs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4800 9600 19200 38400 76800 146400

-50

 0

 50

 100

 150

StealRet-1
StealRet-2
StealRet-3
StealRet-4
StealRet-5
Avg. tasks

(a) TCE-Hopper

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400 4800 9600 19200 38400

-50

 0

 50

 100

 150

StealRet-1
StealRet-2
StealRet-3
StealRet-4
StealRet-5
Avg. tasks

(b) HF-Be256-Hopper

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 9600 19200 38400 76800

-50

 0

 50

 100

 150

StealRet-1
StealRet-2
StealRet-3
StealRet-4
StealRet-5
Avg. tasks

(c) HF-Be512-Hopper

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16384 32768 65536 163840

-500

 0

 500

 1000

StealRet-1
StealRet-2
StealRet-5

StealRet-10
StealRet-14

Avg. tasks

(d) HF-Be512-Intrepid

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8000 16000 32000 64000 128000

-500

 0

 500

 1000

 1500

 2000

StealRet-1
StealRet-2
StealRet-5

StealRet-10
StealRet-14

Avg. tasks

(e) HF-Be512-Titan

Figure 5.8: Efficiency of retentive work stealing across iterations relative to
ideal anticipated speedup and tasks per core. x-axis — core count; left y-axis
— efficiency; right y-axis — tasks per core (error bar: std. dev.)

63

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 4800 9600 19200 38400 76800 146400

SuccSteals-1
SuccSteals-2
SuccSteals-5

(a) TCE-Hopper

-5

 0

 5

 10

 15

 20

 25

 30

 35

 2400 4800 9600 19200 38400

SuccSteals-1
SuccSteals-2
SuccSteals-5

(b) HF-Be256-Hopper

-5

 0

 5

 10

 15

 20

 25

 30

 35

 9600 19200 38400 76800

SuccSteals-1
SuccSteals-2
SuccSteals-5

(c) HF-Be512-Hopper

 0

 10

 20

 30

 40

 50

 60

 70

 80

 16384 32768 65536 163840

SuccSteals-1
SuccSteals-2
SuccSteals-5

(d) HF-Be512-Intrepid

 0

 50

 100

 150

 200

 8000 16000 32000 64000 128000

SuccSteals-1
SuccSteals-2
SuccSteals-5

(e) HF-Be512-Titan

Figure 5.10: Average (error bar: standard deviation) number of successful
steals for the first, second, and fifth iteration of retentive stealing. x-axis —
number of cores; y-axis — average number of steals.

65

Pa
ra

lle
l e

ffi
ci

en
cy

 (%
)

Core count

Tasks per core

Core count

N
um

. s
uc

ce
ss

fu
l s

te
al

s

Sriram Krishnamoorthy32

Retentive Stealing Space Overhead: HF

Execution on Titan
Space overhead increase but still same manageable
across iterations

 1

 10

 100

 2000 4000 8000 16000 32000 64000

E
x
ec

u
ti

on
 T

im
e

(s
ec

on
d
s)

Number of Cores

SCF-HF
SCF-WF

SCF-Enum
Ideal

(a) Scaling

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10

K
B

/c
or

e

Iteration

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores
64000 Cores

(b) Help-First

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10

K
B

/c
or

e

Iteration

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores
64000 Cores

(c) Work-First

Figure 5.16: Retentive stealing using our tracing algorithms on recursive
specification of the SCF benchmark on Cray XK6 Titan.

76

Iteration

Tr
ac

e
si

ze
 (K

B/
co

re
)

Sriram Krishnamoorthy33

Retentive Stealing Space Overhead: TCE

Execution on Titan
Space overhead stays the same across iterations

 1

 10

 100

 2000 4000 8000 16000 32000 64000

E
x
ec

u
ti

on
 T

im
e

(s
ec

on
d
s)

Number of Cores

TCE-HF
TCE-WF

TCE-Enum
Ideal

(a) Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

K
B

/c
or

e

Iteration

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores
64000 Cores

(b) Help-First

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

K
B

/c
or

e

Iteration

2000 Cores
4000 Cores
8000 Cores

16000 Cores
32000 Cores
64000 Cores

(c) Work-First

Figure 5.17: Retentive stealing using our tracing algorithms on recursive
specification of the TCE benchmark on Cray XK6 Titan.

77

Tr
ac

e
si

ze
 (K

B/
co

re
)

Iteration

Sriram Krishnamoorthy34

Data Locality Optimization:
NUMA Locality

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687

Sriram Krishnamoorthy35

Constrained Schedules in OpenMP

Loops are naturally matched, leading to good performance

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)

A[i] = B[i] = 0; //init
#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)

B[i] = A[i]; //memcpy

Empirical study

§ Parallel memory copy of 8GB of data, using OpenMP schedule static
§ 80-core system with eight NUMA domains, first-touch policy
§ Execution time: 169ms

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

1 2 3 4 5

A

B
memcpy
thread

Sriram Krishnamoorthy36

Cilk Scheduling

Random work stealing mismatches the initialization and
subsequent use, causing performance degradation.

cilk_for (i = 0; i < size; i++)
A[i] = B[i] = 0; //init

cilk_for (i = 0; i < size; i++)
B[i] = A[i]; //memcpy

Empirical study

§ Parallel memory copy of 8GB of data, using MIT Cilk or OpenMP 3.0 tasks
§ Execution time: 436ms (Cilk/OMP task) vs 169ms (OMP static)

5 2 3 1 2 4 3 4 5 1 5 2 3 1 4

5 2 3 1 2 4 3 4 5 1 5 2 3 1 4

A

B
memcpy
thread 3 4 5 2 1 3 1 4 2 5 1 3 5 2 4

Sriram Krishnamoorthy37

Can we constrain the scheduler to improve
NUMA locality?

Sriram Krishnamoorthy38

Solution: Evolve a Schedule

Capture an application
phase’s steal tree

Adapt schedule using
relaxed work stealing

Data localization

Is load
balanced?

Load
imbalance
observed?

Strict ordered replay
Yes

No

Yes

No

Sriram Krishnamoorthy39

Alternative Strategy: Manual Steal Tree
Construction

Explicit markup of steal tree in the user program

Useful in non-iterative applications

Sriram Krishnamoorthy40

Data Redistribution Cost

First few iterations, data is redistributed (copied) to match a
given schedule

Whole Program Locality Optimization
! Data redistribution cost (for the first few iterations)

 0

 5

 10

 15

 20

 25

 30

 1 4 10 20 40 80

T
im

e
(s

ec
)

Number of threads

mg
fdtd

floyd-warshall
heat

cg

Preliminary Examination: Optimizing Work Stealing Algorithms with Scheduling Constraints ⌥ Jonathan Lifflander ⌥ 42 / 56 Preliminary Examination: Optimizing Work Stealing Algorithms with Scheduling Constraints42 / 56

Number of threads

Ex
ec

ut
io

n
tim

e
(s

ec
)

Sriram Krishnamoorthy41

Benchmarks: Iterative Matching StructureWhole Program Locality Optimization
! Iterative, matching structure

heat floyd-warshall

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 10 20 40 80

S
p
ee

d
u
p

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 10 20 40 80

Number of Threads Number of Threads

Cilk interleave OMP tasks (interleave) Constrained Iter. RelWS

Preliminary Examination: Optimizing Work Stealing Algorithms with Scheduling Constraints ⌥ Jonathan Lifflander ⌥ 43 / 56 Preliminary Examination: Optimizing Work Stealing Algorithms with Scheduling Constraints43 / 56

Extract template schedule, apply RelWS for five iterations
until convergence, then use StOWS

Sriram Krishnamoorthy42

Benchmarks: Iterative Differing Structure

Start with random work stealing on kernel, refine with RelWS until
convergence, then use StOWS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 4 10 20 40 80

S
p
ee

d
u
p

Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained User-SpecifiedConstrained StUWS

Number of threads

Sp
ee

du
p

Sriram Krishnamoorthy43

Benchmarks: Iterative Multiple Structures

We evaluate two approaches: using the same schedule across all
kernels, and using a different schedule for each kernel

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 10 20 40 80

Number of threads
Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained User-SpecifiedConstrained StUWS

Sp
ee

du
p

Number of threads

Sriram Krishnamoorthy44

Benchmarks: Non-iterative Matching
Structure

Reuse schedule from initialization for other phases with StUWS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 4 10 20 40 80

Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS Constrained User-SpecifiedConstrained StUWS

Sp
ee

du
p

Number of threads

Sriram Krishnamoorthy45

Task Granularity Selection

Optimizing data locality for fork/join programs using constrained work stealing.
SC’14. http://dl.acm.org/citation.cfm?id=2683687

Sriram Krishnamoorthy46

Task granularity selection

A key challenge for task-parallel programs

Trade-off
Expose more concurrency
Achieve good sequential performance with a coarse grain
size

Sriram Krishnamoorthy47

Observation

Concurrency only need to be exposed to achieve load
balance

Once load is balanced, exposed concurrency can be
“turned off”

We can coax the scheduler to select coarser grained work
units

Sriram Krishnamoorthy48

Iterative Granularity Selection

Start with small grain
size

Relaxed work stealing
à schedule

Drop steal tree leaves

Replace leaves with
sequential (coarse)

tasks

Needs
coarsening

?

No

Yes

Sriram Krishnamoorthy49

Dynamic Granularity Selection: heat

Iterative locality optimization with grain size selection

 1

 10

 100

 1000

 10000

sample 1 sample 2 sample 3

C
ou

n
t

64x512 64x8k 64x16k

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 4 10 20 40 80

S
p
ee

d
u
p

Number of threads

64x8192-Block Iterative

64x1024-Block Iterative

64x256-Block Iterative

64x256-Block Dynamic

Sp
ee

du
p

Number of threads

Sriram Krishnamoorthy50

Dynamic Granularity Selection: cg

sample 1 sample 2 sample 3

32 Rows
512 Rows

4k Rows
16k Rows

 1 4 10 20 40 80

Number of threads

1024-Rows Iterative

128-Rows Iterative

32-Rows Iterative

32-Rows Dynamic

Sp
ee

du
p

Number of threads

 1

 10

 100

 1000

 10000

sample 1 sample 2 sample 3

C
o
u
n
t

64x512 64x8k 64x16k

Sriram Krishnamoorthy51

Data Race Detection
t1 t2

A

Steal tree: low-overhead tracing of work stealing schedulers.
PLDI’13 http://dl.acm.org/citation.cfm?id=2462193

Sriram Krishnamoorthy52

Data Race Detection

Detect conflicting operations in a fork/join program

Key check:
Determine if two memory operation can execute in parallel
For any possible schedule

Sriram Krishnamoorthy53

Dynamic Program Structure Tree (DPST)

Two steps s1 and s2 may execute in parallel if:
l1 is least common ancestor (LCA) of s1 and s2 in DPST
c1 is ancestor of s1 and immediate child of l1
c1 is an async node

finish { //F1
step1;
async { //A1
step2;
async { //A2
step3;

}
step4;

}
step5;

}

��

����� �� �����

����� �� �����

�����

Sriram Krishnamoorthy54

Steal-Tree Aided LCA Computation

lca(s1, s2):
if (s1.st_node == s2.st_node)
return dpst_lca(s1,s2); //dpst walk

if (s1.st_node.level > s2.st_node.level)
return lca(s1.st_node.victim, s2)

return lca(s1, s2.st_node.victim)

The nodes of the DPST tree can be annotated with the
nodes of steal tree they belong to
Data race detection involves multiple walks of the DPST
for each memory access checked

Sriram Krishnamoorthy55

Application: Data Race Detection

Significant reduction in the number of DPST edges
traversed

 0

 20

 40

 60

 80

 100

AllQueens LU Heat NBody Matmul

2 Threads
4 Threads
8 Threads

16 Threads
32 Threads
64 Threads
96 Threads

120 Threads

Pe
rc

en
t R

ed
uc

tio
n

Sriram Krishnamoorthy56

Other Results

Locality-aware task graph scheduling
Color-based constraints on work stealing schedulers

Cache locality optimization
Effect-based splicing of concurrent tasks to improve cache
locality

Speculative work stealing
Expose greater concurrency

Localized parallel failure recovery

Sriram Krishnamoorthy57

Lessons Learned

Random work stealing with ability to constrain its behavior
can bring several benefits

Steal trees can be useful in a variety of contexts
Retentive stealing
Data locality optimization
Task granularity selection
Data race detection
…

Need to design interfaces to programmatically extract and
use work stealing schedules

Sriram Krishnamoorthy58

Continuing Research Challenges

Recursive program specification
Enabling user to express high level intent and properties
Compiler analysis and transformation
Runtime techniques

Scheduling and load balancing
Fault tolerance
Power/energy efficiency
Data locality

Correctness and performance tools
Architectural and other low-level support for such
abstractions

Sriram Krishnamoorthy59

Conclusions

Abstractions supporting task parallelism can meet
performance and programmability challenges

Runtime systems can adapt productively
Changing the load balancer or adding fault tolerance
involved no change in the user code

Maturing an execution paradigm requires lots of research
and experience

Sriram Krishnamoorthy60

Thank You!

Sriram Krishnamoorthy61

